驻马店市重点中学2023届中考三模数学试题含解析.doc

上传人:茅**** 文档编号:88321983 上传时间:2023-04-25 格式:DOC 页数:20 大小:1.06MB
返回 下载 相关 举报
驻马店市重点中学2023届中考三模数学试题含解析.doc_第1页
第1页 / 共20页
驻马店市重点中学2023届中考三模数学试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《驻马店市重点中学2023届中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《驻马店市重点中学2023届中考三模数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,点D在ABC边延长线上,点O是边AC上一个动点,过O作直线EFBC,交BCA的平分线于点F,交BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立

2、的是()A2ACE=BAC+BBEF=2OCCFCE=90D四边形AFCE是矩形2我国古代数学著作九章算术中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为()A16+16B16+8C24+16D4+43若点M(3,y1),N(4,y2)都在正比例函数y=k2x(k0)的图象上,则y1与y2的大小关系是()Ay1y2 By1y2 Cy1=y2 D不能确定4PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )A0.25105B0.25106C2.

3、5105D2.51065某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A(7+x)(5+x)3=75B(7+x)(5+x)=375C(7+2x)(5+2x)3=75D(7+2x)(5+2x)=3756在3,1,0,1四个数中,比2小的数是()A3B1C0D17如图,已知点A(0,1),B(0,1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则BAC等于( )A90B120C60D308若一次函数的图像过

4、第一、三、四象限,则函数( )A有最大值B有最大值C有最小值D有最小值9在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示对于这10名学生的参赛成绩,下列说法中错误的是( )A众数是90B中位数是90C平均数是90D极差是1510如图,在ABC中,ACB90,CDAB于点D,则图中相似三角形共有()A1对B2对C3对D4对11某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )A144(1x)2=100B100(1x)2=144C144(1+x)2=100D100(1

5、+x)2=14412抢微信红包成为节日期间人们最喜欢的活动之一对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图根据如图提供的信息,红包金额的众数和中位数分别是()A20,20B30,20C30,30D20,30二、填空题:(本大题共6个小题,每小题4分,共24分)13当2x5时,二次函数y(x1)2+2的最大值为_14若分式的值为正数,则x的取值范围_15在直径为的圆柱形油槽内装入一些油后,截面如图所示如果油面宽,那么油的最大深度是_16已知,(),请用计算器计算当时,、的若干个值,并由此归纳出当时,、间的大小关系为_.17在ABCD中,AB=3,BC=4,当ABCD的面积

6、最大时,下列结论:AC=5;A+C=180o;ACBD;AC=BD其中正确的有_(填序号)18不等式组的解是_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B两点,与X轴交于点C,与Y轴交于点D,已知,A(n,1),点B的坐标为(2,m)(1)求反比例函数的解析式和一次函数的解析式;(2)连结BO,求AOB的面积;(3)观察图象直接写出一次函数的值大于反比例函数的值时x的取值范围是 20(6分)如图,在自动向西的公路l上有一检查站A,在观测点B的南偏西53方向,检查站一工作人员家住在与观测

7、点B的距离为7km,位于点B南偏西76方向的点C处,求工作人员家到检查站的距离AC(参考数据:sin76,cos76,tan 764,sin53,tan53)21(6分)已知:如图,AB为O的直径,C是BA延长线上一点,CP切O于P,弦PDAB于E,过点B作BQCP于Q,交O于H,(1)如图1,求证:PQPE;(2)如图2,G是圆上一点,GAB30,连接AG交PD于F,连接BF,若tanBFE3,求C的度数;(3)如图3,在(2)的条件下,PD6,连接QC交BC于点M,求QM的长22(8分)先化简,再求值:a(a3b)+(a+b)2a(ab),其中a=1,b=23(8分)如图,一根电线杆PQ直

8、立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60和30,求电线杆PQ的高度(结果保留根号).24(10分)如图所示:ABC是等腰三角形,ABC=90(1)尺规作图:作线段AB的垂直平分线l,垂足为H(保留作图痕迹,不写作法);(2)垂直平分线l交AC于点D,求证:AB=2DH25(10分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表: 组别身高Ax160B160x165C165x170D170x175Ex175根据图表提供的信息,回答下列问题

9、:(1)样本中,男生的身高众数在 组,中位数在 组;(2)样本中,女生身高在E组的有 人,E组所在扇形的圆心角度数为 ;(3)已知该校共有男生600人,女生480人,请估让身高在165x175之间的学生约有多少人?26(12分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了_名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为_;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组

10、合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.27(12分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图请你根据统计图解答下列问题:(1)这次参与调查的村民人数为 人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率参考答案一、选择题(

11、本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2ACE=BAC+B,EF=2OC,FCE=90,进而得到结论【详解】解:ACD是ABC的外角,ACD=BAC+B,CE平分DCA,ACD=2ACE,2ACE=BAC+B,故A选项正确;EFBC,CF平分BCA,BCF=CFE,BCF=ACF,ACF=EFC,OF=OC,同理可得OE=OC,EF=2OC,故B选项正确;CF平分BCA,CE平分ACD,ECF=ACE+ACF=180=90,故C选项正确;O不一定是AC的中点,四边形

12、AECF不一定是平行四边形,四边形AFCE不一定是矩形,故D选项错误,故选D【点睛】本题考查三角形外角性质,角平分线的定义,以及平行线的性质2、A【解析】分析出此三棱柱的立体图像即可得出答案.【详解】由三视图可知主视图为一个侧面,另外两个侧面全等,是长高=4=,所以侧面积之和为2+44= 16+16,所以答案选择A项.【点睛】本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.3、A【解析】根据正比例函数的增减性解答即可.【详解】正比例函数y=k2x(k0),k20,该函数的图象中y随x的增大而减小,点M(3,y1),N(4,y2)在正比例函数y=k2x(k0)图象上,43,y2y

13、1,故选:A【点睛】本题考查了正比例函数图象与系数的关系:对于y=kx(k为常数,k0),当k0时, y=kx的图象经过一、三象限,y随x的增大而增大;当k0时, y=kx的图象经过二、四象限,y随x的增大而减小.4、D【解析】根据科学记数法的定义,科学记数法的表示形式为a10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于1还是小于1当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0)【详解】解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而故选D5、D

14、【解析】试题分析:由题意得;如图知;矩形的长=7+2x 宽=5+2x 矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=375考点:列方程点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题6、A【解析】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案【详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,所以在-3,-1,0,1这四个数中比-2小的数是-3

15、,故选A【点睛】本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.7、C【解析】解:A(0,1),B(0,1),AB=1,OA=1,AC=1在RtAOC中,cosBAC=,BAC=60故选C点睛:本题考查了垂径定理的应用,关键是求出AC、OA的长解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧8、B【解析】解:一次函数y=(m+1)x+m的图象过第一、三、四象限,m+10,m0,即-1m0,函数有最大值,最大值为,故选B9、C【解析】由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:【详解】解:90出现了5次,出现的次数最多,

16、众数是90;共有10个数,中位数是第5、6个数的平均数,中位数是(90+90)2=90;平均数是(801+852+905+952)10=89;极差是:9580=1错误的是C故选C10、C【解析】ACB=90,CDAB,ABCACD,ACDCBD,ABCCBD,所以有三对相似三角形故选C11、D【解析】试题分析:2013年的产量=2011年的产量(1+年平均增长率)2,把相关数值代入即可解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D点评:考查列一元二次方程;得到2013年产量的等量关系是解

17、决本题的关键12、C【解析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数【详解】捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】先根据二次函数的图象和性质判断出2x5时的增减性,然后再找最大值即可.【详解】对称轴为 a10,当x1时,y随x的增大而减小,当x2时,二次函数y(x1)2+2的最大值为1,故答案为:1【点睛】本题主要考查二次函

18、数在一定范围内的最大值,掌握二次函数的图象和性质是解题的关键.14、x1【解析】试题解析:由题意得:0,-60,1-x0,x115、2m【解析】本题是已知圆的直径,弦长求油的最大深度其实就是弧AB的中点到弦AB的距离,可以转化为求弦心距的问题,利用垂径定理来解决【详解】解:过点O作OMAB交AB与M,交弧AB于点E连接OA在RtOAM中:OA=5m,AM=AB=4m根据勾股定理可得OM=3m,则油的最大深度ME为5-3=2m【点睛】圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直角三角形的问题16、【解析】试题分析:当n=3时,A=0.3178,B=1,AB;当n=4时,A=

19、0.2679,B=0.4142,AB;当n=5时,A=0.2631,B=0.3178,AB;当n=6时,A=0.2134,B=0.2679,AB;以此类推,随着n的增大,a在不断变小,而b的变化比a慢两个数,所以可知当n3时,A、B的关系始终是AB.17、【解析】由当ABCD的面积最大时,ABBC,可判定ABCD是矩形,由矩形的性质,可得正确,错误,又由勾股定理求得AC=1【详解】当ABCD的面积最大时,ABBC,ABCD是矩形,A=C=90,AC=BD,故错误,正确;A+C=180;故正确;AC=1,故正确故答案为:【点睛】此题考查了平行四边形的性质、矩形的判定与性质以及勾股定理注意证得AB

20、CD是矩形是解此题的关键18、【解析】分别求出各不等式的解集,再求出其公共解集即可【详解】 解不等式,得x1,解不等式,得x1,所以不等式组的解集是1x1,故答案是:1x1【点睛】考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)y=;y=x;(2);(1)2x0或x1;【解析】(1)过A作AMx轴于M,根据勾股定理求出OM,得出A的坐标,把A得知坐标代入反比例函数的解析式求出解析式,吧B的坐标代入求出B的坐标,吧A、B的坐标代入一次函数的解

21、析式,即可求出解析式(2)求出直线AB交y轴的交点坐标,即可求出OD,根据三角形面积公式求出即可(1)根据A、B的横坐标结合图象即可得出答案【详解】解:(1)过A作AMx轴于M,则AM=1,OA=,由勾股定理得:OM=1,即A的坐标是(1,1),把A的坐标代入y=得:k=1,即反比例函数的解析式是y=把B(2,n)代入反比例函数的解析式得:n=,即B的坐标是(2,),把A、B的坐标代入y=ax+b得:,解得:k=b=,即一次函数的解析式是y=x(2)连接OB,y=x,当x=0时,y=,即OD=,AOB的面积是SBOD+SAOD=2+1=(1)一次函数的值大于反比例函数的值时x的取值范围是2x0

22、或x1,故答案为2x0或x1【点睛】本题考查了一次函数与反比例函数的交点问题以及用待定系数法求函数的解析式,函数的图象的应用.熟练掌握相关知识是解题关键.20、工作人员家到检查站的距离AC的长约为km【解析】分析:过点B作BHl交l于点H,解RtBCH,得出CH=BCsinCBH=,BH=BCcosCBH=再解RtBAH中,求出AH=BHtanABH=,那么根据AC=CH-AH计算即可.详解:如图,过点B作BHl交l于点H,在RtBCH中,BHC=90,CBH=76,BC=7km,CH=BCsinCBH,BH=BCcosCBH在RtBAH中,BHA=90,ABH=53,BH=,AH=BHtan

23、ABH,AC=CHAH=(km)答:工作人员家到检查站的距离AC的长约为km点睛:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键21、(1)证明见解析(2)30(3) QM=【解析】试题分析:(1)连接OP,PB,由已知易证OBP=OPB=QBP,从而可得BP平分OBQ,结合BQCP于点Q,PEAB于点E即可由角平分线的性质得到PQ=PE;(2)如下图2,连接OP,则由已知易得CPO=PEC=90,由此可得C=OPE,设EF=x,则由GAB=30,AEF=90可得AE=,在RtBEF中,由tanBFE=可得BE=,从而可得AB=,则OP=OA=

24、,结合AE=可得OE=,这样即可得到sinOPE=,由此可得OPE=30,则C=30;(3)如下图3,连接BG,过点O作OKHB于点K,结合BQCP,OPQ=90,可得四边形POKQ为矩形由此可得QK=PO,OKCQ从而可得KOB=C=30;由已知易证PE=,在RtEPO中结合(2)可解得PO=6,由此可得OB=QK=6;在RtKOB中可解得KB=3,由此可得QB=9;在ABG中由已知条件可得BG=6,ABG=60;过点G作GNQB交QB的延长线于点N,由ABG=CBQ=60,可得GBN=60,从而可得解得GN=,BN=3,由此可得QN=12,则在RtBGN中可解得QG=,由ABG=CBQ=6

25、0可知BQG中BM是角平分线,由此可得QM:GM=QB:GB=9:6由此即可求得QM的长了.试题解析:(1)如下图1,连接OP,PB,CP切O于P,OPCP于点P,又BQCP于点Q,OPBQ,OPB=QBP,OP=OB,OPB=OBP,QBP=OBP,又PEAB于点E,PQ=PE;(2)如下图2,连接,CP切O于P,PDAB 在Rt中,GAB=30设EF=x,则在Rt中,tanBFE=3 在RtPEO中, 30;(3)如下图3,连接BG,过点O作于K,又BQCP,四边形POKQ为矩形,QK=PO,OK/CQ,30,O 中PDAB于E ,PD=6 ,AB为O的直径,PE= PD= 3,根据(2)

26、得,在RtEPO中,OB=QK=PO=6,在Rt中, ,QB=9,在ABG中,AB为O的直径,AGB=90,BAG=30,BG=6,ABG=60,过点G作GNQB交QB的延长线于点N,则N=90,GBN=180-CBQ-ABG=60,BN=BQcosGBQ=3,GN=BQsinGBQ=,QN=QB+BN=12,在RtQGN中,QG=,ABG=CBQ=60,BM是BQG的角平分线,QM:GM=QB:GB=9:6,QM=.点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ、BG的长及CBQ=ABG=60;(2)再过点G作GNQB并交QB的延长线于点N,解出BN

27、和GN的长,这样即可在RtQGN中求得QG的长,最后在BQG中“由角平分线分线段成比例定理”即可列出比例式求得QM的长了.22、 【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;【详解】解:原式=a23ab+a2+2ab+b2a2+ab=a2+b2,当a=1、b=时,原式=12+()2=1+=【点睛】考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键23、(6+)米【解析】根据已知的边和角,设CQ=x,BC=QC=x,PC=BC=3x,根据PQ=BQ列出方程求解即可.【详解】解:延长PQ交地面与点C,由题意可得:AB=6m,PCA=90,PAC=4

28、5,PBC=60,QBC=30,设CQ=x,则在RtBQC中,BC=QC=x,在RtPBC中PC=BC=3x,在RtPAC中,PAC=45,则PC=AC,3x=6+x,解得x=3+,PQ=PC-CQ=3x-x=2x=6+,则电线杆PQ高为(6+)米【点睛】此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.24、 (1)见解析;(2)证明见解析.【解析】(1)利用线段垂直平分线的作法,分别以A,B为端点,大于为半径作弧,得出直线l即可;(2)利用利用平行线的性质以及平行线分线段成比例定理得出点D是AC的中点,进而得出答案【详解】解:(1)如图所示:直线l即为所求;(2)证

29、明:点H是AB的中点,且DHAB,DHBC,点D是AC的中点, AB=2DH.【点睛】考查作图基本作图,线段垂直平分线的性质,等腰三角形的性质等,熟练掌握垂直平分线的性质是解题的性质.25、(1)B,C;(2)2;(3)该校身高在165x175之间的学生约有462人【解析】根据直方图即可求得男生的众数和中位数,求得男生的总人数,就是女生的总人数,然后乘以对应的百分比即可求解【详解】解:(1)直方图中,B组的人数为12,最多,男生的身高的众数在B组,男生总人数为:4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,男生的身高的中位数在C组,故答案为B,C;(2)女生身高在

30、E组的百分比为:117.5%37.5%25%15%=5%,抽取的样本中,男生、女生的人数相同,样本中,女生身高在E组的人数有:405%=2(人),故答案为2;(3)600+480(25%+15%)=270+192=462(人)答:该校身高在165x175之间的学生约有462人【点睛】考查频数(率)分布直方图, 频数(率)分布表, 扇形统计图, 中位数, 众数,比较基础,掌握计算方法是解题的关键.26、50 见解析(3)115.2 (4) 【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即

31、可把条形统计图补充完整;(3)根据圆心角的度数=360 它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=1530%=50(名)故答案为50;(2)足球项目所占的人数=5018%=9(名),所以其它项目所占人数=5015916=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360=115.2,故答案为115.2;(4)画树状图如图由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)=点睛:本题考查的是条形统计图和扇形统计图

32、的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.27、 (1)120;(2)42人;(3) 90;(4) 【解析】(1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数;(2)利用条形统计图以及样本数量得出喜欢广场舞的人数;(3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数;(4)利用树状图法列举出所有的可能进而得出概率【详解】(1)这次参与调查的村民人数为:2420%=120(人);故答案为:120;(2)喜欢广场舞的人数为:1202415309=42(人),如图所示:;(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:360=90;(4)如图所示:,一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:【点睛】此题主要考查了扇形统计图以及条形统计图的应用和树状图法求概率,正确列举出所有可能是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁