《陕西省咸阳市兴平市重点中学2023年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《陕西省咸阳市兴平市重点中学2023年中考适应性考试数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是( )A5B7C9D112已知O的半径为3,
2、圆心O到直线L的距离为2,则直线L与O的位置关系是()A相交B相切C相离D不能确定3由一些大小相同的小正方形搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方形的个数最少是( )A4B5C6D74两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是()ABCD5下列说法正确的是( )A掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是,则甲的射击成绩较稳定C“明天降雨的概率为”,表示明天有半天都在降雨D了解一批电视机
3、的使用寿命,适合用普查的方式6如图,在RtABC中,ACB=90,CDAB,垂足为D,AB=c,A=,则CD长为()Acsin2Bccos2CcsintanDcsincos7下列计算或化简正确的是()ABCD8对于不等式组,下列说法正确的是()A此不等式组的正整数解为1,2,3B此不等式组的解集为C此不等式组有5个整数解D此不等式组无解9计算 的结果是( )Aa2B-a2Ca4D-a410如图,直线a、b被c所截,若ab,1=45,2=65,则3的度数为( )A110B115C120D130二、填空题(共7小题,每小题3分,满分21分)11将两块全等的含30角的三角尺如图1摆放在一起,设较短直
4、角边为1,如图2,将RtBCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为 时,四边ABC1D1为矩形;当点B的移动距离为 时,四边形ABC1D1为菱形12如图,在矩形ABCD中,AB=,E是BC的中点,AEBD于点F,则CF的长是_13完全相同的3个小球上面分别标有数2、1、1,将其放入一个不透明的盒子中后摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是_14用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为 (用含n的代数式表示
5、)15一个正多边形的一个外角为30,则它的内角和为_16若一个正n边形的每个内角为144,则这个正n边形的所有对角线的条数是_.17在函数中,自变量x的取值范围是_三、解答题(共7小题,满分69分)18(10分) 如图,在平面直角坐标系中,抛物线yx2+bx+c(a0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(1,0),抛物线的对称轴直线x交x轴于点D(1)求抛物线的解析式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在(2)的条件下,将线段
6、FG绕点G顺时针旋转一个角(090),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由19(5分)关于x的一元二次方程ax2+bx+1=1(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根20(8分)先化简,再求值:(),其中x的值从不等式组的整数解中选取21(10分)先化简,再求值:,其中满足.22(10分) (1)计算:|1|(2017)0()13tan30;(2)化简:(),并在2,3,4,
7、5这四个数中取一个合适的数作为a的值代入求值23(12分)某汽车专卖店销售A,B两种型号的汽车上周销售额为96万元:本周销售额为62万元,销售情况如下表:A型汽车B型汽车上周13本周21(1)求每辆A型车和B型车的售价各为多少元(2)甲公司拟向该店购买A,B两种型号的汽车共6辆,购车费不少于130万元,且不超过140万元,则有哪几种购车方案?哪种购车方案花费金额最少?24(14分)如图,AB是O的直径,弧CDAB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E(1)如图(1)连接PC、CB,求证:BCP=PED;(2)如图(2)过点P作O的切线交CD的延长线于点E,过点A向PF引垂
8、线,垂足为G,求证:APG=F;(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=2,求O的直径AB参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题解析:D、E、F分别为AB、BC、AC中点,DF=BC=2,DFBC,EF=AB=,EFAB,四边形DBEF为平行四边形,四边形DBEF的周长=2(DF+EF)=2(2+)=1故选B2、A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:dr;相切:d=r;相离:dr;即可选出答案解:O的半径为3,圆心O到直线L的距离为2,32,即:dr,直线L与O的位置关系
9、是相交故选A考点:直线与圆的位置关系3、C【解析】试题分析:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=1故选C4、C【解析】混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案【详解】设瓶子的容积即酒精与水的和是1,则纯酒精之和为:1+1+, 水之和为:+,混合液中的酒精与水的容积之比为:(+)(+),故选C【点睛】本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键5、B【解析】利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断【详解】解
10、: A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;C、“明天降雨的概率为”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;故选B【点睛】本题考查方差;全面调查与抽样调查;随机事件;概率的意义,掌握基本概念是解题关键6、D【解析】根据锐角三角函数的定义可得结论.【详解】在RtABC中,ACB=90,AB=c,A=a,根据锐角三角函数的定义可得sin= ,BC=csin,A+B=90,DCB+B
11、=90,DCB=A=在RtDCB中,CDB=90,cosDCB= ,CD=BCcos=csincos,故选D7、D【解析】解:A不是同类二次根式,不能合并,故A错误;B,故B错误;C,故C错误;D,正确故选D8、A【解析】解:,解得x,解得x1,所以不等式组的解集为1x,所以不等式组的整数解为1,2,1故选A点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解)解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解9、D【解析】直接利用同底数幂的乘法运算法则计算得出答案【详解】解
12、:,故选D【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键10、A【解析】试题分析:首先根据三角形的外角性质得到1+2=4,然后根据平行线的性质得到3=4求解解:根据三角形的外角性质,1+2=4=110,ab,3=4=110,故选A点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小二、填空题(共7小题,每小题3分,满分21分)11、,【解析】试题分析:当点B的移动距离为时,C1BB1=60,则ABC1=90,根据有一直角的平行四边形是矩形,可判定四边形ABC1D1为矩形;当点B的移动距离为时,D、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定
13、四边形ABC1D1为菱形试题解析:如图:当四边形ABC1D是矩形时,B1BC1=9030=60,B1C1=1,BB1=,当点B的移动距离为时,四边形ABC1D1为矩形;当四边形ABC1D是菱形时,ABD1=C1BD1=30,B1C1=1,BB1=,当点B的移动距离为时,四边形ABC1D1为菱形考点:1菱形的判定;2矩形的判定;3平移的性质12、 【解析】试题解析:四边形ABCD是矩形, AEBD, ABEADB, E是BC的中点, 过F作FGBC于G, 故答案为13、【解析】画树状图列出所有等可能结果,从中找到能两次摸到的球上数之和是负数的结果,根据概率公式计算可得【详解】解:画树状图如下:由
14、树状图可知共有9种等可能结果,其中两次摸到的球上数之和是负数的有6种结果,所以两次摸到的球上数之和是负数的概率为,故答案为:【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率所求情况数与总情况数之比14、4n+1【解析】分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个【详解】解:第一个图案正三角形个数为6=1+4;第二个图案正三角形个数为1+4+4=1+14;第三个图案正三角形个数为1+14+4=1+34;第n个图案正三角形个数为1+(n1)4+4=1+4n=4n+1故答案为4
15、n+1考点:规律型:图形的变化类15、1800【解析】试题分析:这个正多边形的边数为=12,所以这个正多边形的内角和为(122)180=1800故答案为1800考点:多边形内角与外角16、2【解析】由正n边形的每个内角为144结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论【详解】一个正n边形的每个内角为144,144n=180(n-2),解得:n=1这个正n边形的所有对角线的条数是:= =2故答案为2【点睛】本题考查了多边形的内角以及多边形的对角线,解题的关键是求出正n边形的边数本题属于基础题,难度不大,解决该题型题目时,根据多边形的内角和公式
16、求出多边形边的条数是关键17、x1且x1【解析】试题分析:根据二次根式有意义,分式有意义得:1x0且x+10,解得:x1且x1故答案为x1且x1考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件三、解答题(共7小题,满分69分)18、(1) ;(1) ,E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5)【解析】(1)设B(x1,5),由已知条件得 ,进而得到B(2,5)又由对称轴求得b最终得到抛物线解析式.(1)先求出直线BC的解析式,再设E(m,m+1),F(m,m1+m+1)求得FE的值,得到SCBFm1+2m又由S四边形CDBFSCBF+SCDB,得S四边形
17、CDBF最大值, 最终得到E点坐标(3)设N点为(n,n1+n+1),1n2过N作NOx轴于点P,得PGn1又由直角三角形的判定,得ABC为直角三角形,由ABCGNP, 得n1+或n1(舍去),求得P点坐标又由ABCGNP,且时,得n3或n2(舍去)求得P点坐标【详解】解:(1)设B(x1,5)由A(1,5),对称轴直线x 解得,x12B(2,5)又b抛物线解析式为y ,(1)如图1,B(2,5),C(5,1)直线BC的解析式为yx+1由E在直线BC上,则设E(m,m+1),F(m,m1+m+1)FEm1+m+1(n+1)m1+1m由SCBFEFOB,SCBF(m1+1m)2m1+2m又SCD
18、BBDOC(2)1 S四边形CDBFSCBF+SCDBm1+2m+化为顶点式得,S四边形CDBF(m1)1+ 当m1时,S四边形CDBF最大,为此时,E点坐标为(1,1)(3)存在如图1,由线段FG绕点G顺时针旋转一个角(595),设N(n,n1+n+1),1n2过N作NOx轴于点P(n,5)NPn1+n+1,PGn1又在RtAOC中,AC1OA1+OC11+25,在RtBOC中,BC1OB1+OC116+215AB15115AC1+BC1AB1ABC为直角三角形当ABCGNP,且时,即, 整理得,n11n65解得,n1+ 或n1(舍去)此时P点坐标为(1+,5)当ABCGNP,且时,即, 整
19、理得,n1+n115解得,n3或n2(舍去)此时P点坐标为(3,5)综上所述,满足题意的P点坐标可以为,(1+,5),(3,5)【点睛】本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.19、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=2【解析】分析:(2)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(2)解:由题意:,原方程有两个不相等的实数根(2)答案不唯一,满足()即可,例如:解:令,则原方程为,解得:点睛:考查一元二次方程根的判别式,当时,
20、方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.20、-【解析】先化简,再解不等式组确定x的值,最后代入求值即可.【详解】(),=解不等式组,可得:2x2,x=1,0,1,2,x=1,0,1时,分式无意义,x=2,原式=21、1【解析】试题分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值试题解析:原式= x2x1=0,x2=x+1,则原式=1.22、(1)-2(2)a+3,7【解析】(1)先根据绝对值、零次方、负整数指数幂、立方根的意义和
21、特殊角的三角函数值把每项化简,再按照实数的运算法则计算即可;(2)先根据分式的运算法则把()化简,再从2,3,4,5中选一个使原分式有意义的值代入计算即可.【详解】(1)原式1+1-4-3+2=-2;(2)原式-(-)=a+3,a3,2,3,a4或a5,取a4,则原式7.【点睛】本题考查了实数的混合运算,分式的化简求值,熟练掌握特殊角的三角函数值、负整数指数幂、分式的运算法则是解答本题的关键.23、 (1) A型车售价为18万元,B型车售价为26万元. (2) 方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;方案二花费少.【解析】(1)根据题意列出二元一次方程组即可求解;(2)
22、由题意列出不等式即可求解.【详解】解:(1)设A型车售价为x元,B型车售价为y元,则:解得:答:A型车售价为18万元,B型车售价为26万元.(2)设A型车购买m辆,则B型车购买(6m)辆, 13018m+26(6m) 140,:2m方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;方案二花费少【点睛】此题主要考查二元一次方程组与不等式的应用,解题的关键是根据题意列出方程组与不等式进行求解.24、(1)见解析;(2)见解析;(3)AB=1【解析】(1)由垂径定理得出CPB=BCD,根据BCP=BCD+PCD=CPB+PCD=PED即可得证;(2)连接OP,知OP=OB,先证FPE=
23、FEP得F+2FPE=180,再由APG+FPE=90得2APG+2FPE=180,据此可得2APG=F,据此即可得证;(3)连接AE,取AE中点N,连接HN、PN,过点E作EMPF,先证PAE=F,由tanPAE=tanF得,再证GAP=MPE,由sinGAP=sinMPE得,从而得出,即MF=GP,由3PF=5PG即,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由FPE=PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,证PEM=ABP得BP=3k,继而可得BE=k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案【详解】证明:(1)AB是O的直径
24、且ABCD,CPB=BCD,BCP=BCD+PCD=CPB+PCD=PED,BCP=PED;(2)连接OP,则OP=OB,OPB=OBP,PF是O的切线,OPPF,则OPF=90,FPE=90OPE,PEF=HEB=90OBP,FPE=FEP,AB是O的直径,APB=90,APG+FPE=90,2APG+2FPE=180,F+FPE+PEF=180,F+2FPE=1802APG=F,APG= F;(3)连接AE,取AE中点N,连接HN、PN,过点E作EMPF于M,由(2)知APB=AHE=90,AN=EN,A、H、E、P四点共圆,PAE=PHF,PH=PF,PHF=F,PAE=F,tanPAE
25、=tanF,由(2)知APB=G=PME=90,GAP=MPE,sinGAP=sinMPE,则,MF=GP,3PF=5PG,设PG=3k,则PF=5k,MF=PG=3k,PM=2k由(2)知FPE=PEF,PF=EF=5k,则EM=4k,tanPEM=,tanF=,tanPAE=,PE=,AP=k,APG+EPM=EPM+PEM=90,APG=PEM,APG+OPA=ABP+BAP=90,且OAP=OPA,APG=ABP,PEM=ABP,则tanABP=tanPEM,即,则BP=3k,BE=k=2,则k=2,AP=3、BP=6,根据勾股定理得,AB=1【点睛】本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点