《浙江省绍兴市迪荡新区重点中学2023年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《浙江省绍兴市迪荡新区重点中学2023年中考适应性考试数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,正方形ABCD内接于圆O,AB4,则图中阴影部分的面积是( )ABCD2下列汽车标志中,不是轴对称图形的是( )A
2、BCD3下列条件中不能判定三角形全等的是( )A两角和其中一角的对边对应相等B三条边对应相等C两边和它们的夹角对应相等D三个角对应相等4把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是( )Aa=2,b=3Ba=-2,b=-3Ca=-2,b=3Da=2,b=-35如图是一个由4个相同的正方体组成的立体图形,它的主视图是()ABCD6如图,要使ABCD成为矩形,需添加的条件是()AAB=BCBABC=90CACBDD1=27如图,在ABC中,DEBC,ADEEFC,ADBD53,CF6,则DE的长为( )A6B8C10D128如图所示是由几个完全相同的小正方体组成的几何
3、体的三视图若小正方体的体积是1,则这个几何体的体积为()A2B3C4D592018的相反数是( )AB2018C-2018D10不等式3x2(x+2)的解是()Ax2Bx2Cx4Dx411二次函数yax2+bx+c(a0)的图象如图,给出下列四个结论:4acb20;3b+2c0;4a+c2b;m(am+b)+ba(m1),其中结论正确的个数是()A1B2C3D412把三角形按如图所示的规律拼图案,其中第个图案中有1个三角形,第个图案中有4个三角形,第个图案中有8个三角形,按此规律排列下去,则第个图案中三角形的个数为()A15B17C19D24二、填空题:(本大题共6个小题,每小题4分,共24分
4、)13有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是_14如图,在ABC中,C=120,AB=4cm,两等圆A与B外切,则图中两个扇形的面积之和(即阴影部分)为 cm2(结果保留).15垫球是排球队常规训练的重要项目之一如图所示的数据是运动员张华十次垫球测试的成绩测试规则为每次连续接球10个,每垫球到位1个记1分则运动员张华测试成绩的众数是_16若一组数据1,2,3,的平均数是2,则的值为_17实数,3,0中的无理数是_18如图,将一对直角三角形卡片的斜边AC重合摆放,直角顶点B
5、,D在AC的两侧,连接BD,交AC于点O,取AC,BD的中点E,F,连接EF若AB12,BC5,且ADCD,则EF的长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF20(6分)解不等式组,请结合题意填空,完成本题的解答(1)解不等式,得 ;(2)解不等式,得 ;(3)把不等式和的解集在数轴上表示出来:(4)原不等式的解集为 21(6分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出
6、一个小球(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率22(8分)已知关于 x 的一元二次方程 x22(k1)x+k(k+2)0 有两个不相等的实数根求 k 的取值范围;写出一个满足条件的 k 的值,并求此时方程的根23(8分)小敏参加答题游戏,答对最后两道单选题就顺利通关第一道单选题有3个选项,第二道单选题有4个选项,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项假设第一道题的正确选项是,第二道题的正确选项是,解答下列问题: (1)如果小敏第一道题不使用“求助”,那么她答对第
7、一道题的概率是_;(2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率;(3)小敏选第_道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大24(10分) “春节”是我国的传统佳节,民间历来有吃“汤圆”的习俗某食品厂为了解市民对去年销量较好的肉馅(A)、豆沙馅 (B)、菜馅(C)、三丁馅 (D)四种不同口味汤圆的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整)请根据以上信息回答:(1)本次参加抽样调查的居民人数是 人;(2)将图 补充完整;( 直接补填在图中)(3)求图中表示“A”的圆心角的度数;(4)若居民区有
8、8000人,请估计爱吃D汤圆的人数25(10分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在1665岁之间的居民,进行了400个电话抽样调查并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)根据上图提供的信息回答下列问题:(1)被抽查的居民中,人数最多的年龄段是 岁;(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出3140岁年龄段的满意人数,并补全图1注:某年龄段的满意率=该年龄段满意人数该年龄段被抽查人数100%2
9、6(12分)为迎接“全民阅读日“系列活动,某校围绕学生日人均阅读时间这一问题,对八年级学生进行随机抽样调查如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次共抽查了八年级学生多少人;(2)请直接将条形统计图补充完整;(3)在扇形统计图中,11.5小时对应的圆心角是多少度;(4)根据本次抽样调查,估计全市50000名八年级学生日人均阅读时间状况,其中在0.51.5小时的有多少人?27(12分)如图,已知A(3,0),B(0,1),连接AB,过B点作AB的垂线段BC,使BABC,连接AC如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作
10、等腰直角BPQ,连接CQ,当点P在线段OA上,求证:PACQ;在(2)的条件下若C、P,Q三点共线,求此时APB的度数及P点坐标参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】连接OA、OB,利用正方形的性质得出OA=ABcos45=2,根据阴影部分的面积=SO-S正方形ABCD列式计算可得【详解】解:连接OA、OB,四边形ABCD是正方形,AOB=90,OAB=45,OA=ABcos45=4=2,所以阴影部分的面积=SO-S正方形ABCD=(2)2-44=8-1故选B【点睛】本题主要考查扇形的面积计算,解题的关键是
11、熟练掌握正方形的性质和圆的面积公式2、C【解析】根据轴对称图形的概念求解【详解】A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误故选C【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合3、D【解析】解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;C、符合SAS,能判定三角形全等;D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;故选D4、B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2
12、-2x-3所以a=2,b=-3,故选B点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.5、D【解析】从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,据此解答即可.【详解】从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,D是该几何体的主视图.故选D.【点睛】本题考查三视图的知识,从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.6、B【解析】根据一个角是90度的平行四边形是矩形进行选择即可【详解】解:A、是邻边相等,可判定平行四边形ABCD是菱形;
13、B、是一内角等于90,可判断平行四边形ABCD成为矩形;C、是对角线互相垂直,可判定平行四边形ABCD是菱形;D、是对角线平分对角,可判断平行四边形ABCD成为菱形;故选:B【点睛】本题主要应用的知识点为:矩形的判定 对角线相等且相互平分的四边形为矩形一个角是90度的平行四边形是矩形7、C【解析】DEBC,ADE=B,AED=C,又ADE=EFC,B=EFC,ADEEFC,BDEF,四边形BFED是平行四边形,BD=EF,解得:DE=10.故选C.8、C【解析】根据左视图发现最右上角共有2个小立方体,综合以上,可以发现一共有4个立方体,主视图和左视图都是上下两行,所以这个几何体共由上下两层小正
14、方体组成,俯视图有3个小正方形,所以下面一层共有3个小正方体,结合主视图和左视图的形状可知上面一层只有最左边有个小正方体,故这个几何体由4个小正方体组成,其体积是4.故选C.【点睛】错因分析容易题,失分原因:未掌握通过三视图还原几何体的方法.9、C【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】2018与-2018只有符号不同,由相反数的定义可得2018的相反数是-2018,故选C.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.10、D【解析】不等式先展开再移项即可解答.【详解】解:不等式3x2(x+2),展开得:3x2x+4,移项得:3x-2x4
15、,解之得:x4.故答案选D.【点睛】本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.11、C【解析】试题解析:图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b24ac0,4acb20,正确;=1,b=2a,a+b+c0,b+b+c0,3b+2c0,是正确;当x=2时,y0,4a2b+c0,4a+c2b,错误;由图象可知x=1时该二次函数取得最大值,ab+cam2+bm+c(m1)m(am+b)ab故正确正确的有三个,故选C考点:二次函数图象与系数的关系【详解】请在此输入详解!12、D【解析】由图可知:第个图案有三角形1个,第图案有三角形1+34个
16、,第个图案有三角形1+3+48个,第个图案有三角形1+3+4+412,第n个图案有三角形4(n1)个(n1时),由此得出规律解决问题【详解】解:解:第个图案有三角形1个,第图案有三角形1+34个,第个图案有三角形1+3+48个,第n个图案有三角形4(n1)个(n1时),则第个图中三角形的个数是4(71)24个,故选D【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an4(n1)是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】分析:直接利用中心对称图形的性质结合概率求法直接得出答案详解:等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边
17、形、矩形、正方形、菱形都是中心对称图形,从中随机抽取一张,卡片上的图形是中心对称图形的概率是:故答案为点睛:此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键14、.【解析】图中阴影部分的面积就是两个扇形的面积,圆A,B的半径为2cm,则根据扇形面积公式可得阴影面积【详解】(cm2).故答案为.考点:1、扇形的面积公式;2、两圆相外切的性质.15、1【解析】根据众数定义:一组数据中出现次数最多的数据叫做众数可得答案【详解】运动员张华测试成绩的众数是1 故答案为1【点睛】本题主要考查了众数,关键是掌握众数定义16、1【解析】根据这组数据的平均数是1和平均数的计算公式
18、列式计算即可【详解】数据1,1,3,的平均数是1,解得:故答案为:1【点睛】本题考查了平均数的定义,根据平均数的定义建立方程求解是解题的关键17、【解析】无理数包括三方面的数:含的,一些开方开不尽的根式,一些有规律的数,根据以上内容判断即可【详解】解:4,是有理数,3、0都是有理数,是无理数故答案为:【点睛】本题考查了对无理数的定义的理解和运用,注意:无理数是指无限不循环小数,包括三方面的数:含的,一些开方开不尽的根式,一些有规律的数18、【解析】先求出BE的值,作DMAB,DNBC延长线,先证明ADMCDN(AAS),得出AM=CN,DM=DN,再根据正方形的性质得BM=BN,设AM=CN=
19、x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根据BD为正方形的对角线可得出BD=, BF=BD=, EF=.【详解】ABC=ADC,A,B,C,D四点共圆,AC为直径,E为AC的中点,E为此圆圆心,F为弦BD中点,EFBD,连接BE,BE=AC=;作DMAB,DNBC延长线,BAD=BCN,在ADM和CDN中,ADMCDN(AAS),AM=CN,DM=DN,DMB=DNC=ABC=90,四边形BNDM为矩形,又DM=DN,矩形BNDM为正方形,BM=BN,设AM=CN=x,BM=AB-AM=12-x=BN=5+x,12-x=5+x,x=,BN=,BD为正方形BNDM的对角线
20、,BD=BN=,BF=BD=,EF=.故答案为.【点睛】本题考查了正方形的性质与全等三角形的性质,解题的关键是熟练的掌握正方形与全等三角形的性质与应用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、详见解析【解析】根据平行四边形的性质和已知条件证明ABECDF,再利用全等三角形的性质:即可得到AE=CF【详解】证:四边形ABCD是平行四边形,AB=CD,B=D,又BE=DF,ABECDF,AE=CF. (其他证法也可)20、(1)x1;(1)x1;(3)见解析;(4)1x1.【解析】先求出不等式的解集,再求出不等式组的解集即可【详解】解:(1)解不等式,
21、得x1,(1)解不等式,得x1,(3)把不等式和的解集在数轴上表示出来:;(4)原不等式组的解集为1x1,故答案为x1,x1,1x1【点睛】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键21、(1)画树状图得:则共有9种等可能的结果;(2)两次摸出的球上的数字和为偶数的概率为:【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案试题解析:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,两次摸
22、出的球上的数字和为偶数的概率为:考点:列表法与树状图法22、方程的根【解析】(1)根据方程的系数结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根【详解】(1)关于x的一元二次方程x11(ka)x+k(k+1)=0有两个不相等的实数根,=1(k1)14k(k1)=16k+40,解得:k (1)当k=0时,原方程为x1+1x=x(x+1)=0,解得:x1=0,x1=1当k=0时,方程的根为0和1【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当0时,方程有两个不相等的实数根
23、”;(1)取k=0,再利用分解因式法解方程23、(1);(2);(3)一.【解析】(1)直接利用概率公式求解;(2)画树状图(用Z表示正确选项,C表示错误选项)展示所有9种等可能的结果数,找出小敏顺利通关的结果数,然后根据概率公式计算出小敏顺利通关的概率;(3)与(2)方法一样求出小颖将“求助”留在第一道题使用,小敏顺利通关的概率,然后比较两个概率的大小可判断小敏在答第几道题时使用“求助”【详解】解:(1)若小敏第一道题不使用“求助”,那么小敏答对第一道题的概率=;故答案为;(2)若小敏将“求助”留在第二道题使用,那么小敏顺利通关的概率是理由如下:画树状图为:(用Z表示正确选项,C表示错误选项
24、)共有9种等可能的结果数,其中小颖顺利通关的结果数为1,所以小敏顺利通关的概率=;(3)若小敏将“求助”留在第一道题使用,画树状图为:(用Z表示正确选项,C表示错误选项)共有8种等可能的结果数,其中小敏顺利通关的结果数为1,所以小敏将“求助”留在第一道题使用,小敏顺利通关的概率=,由于,所以建议小敏在答第一道题时使用“求助”【点睛】本题考查了用画树状图的方法求概率,掌握其画法是解题的关键.24、(1)600;(2)120人,20%;30%;(3)108(4)爱吃D汤圆的人数约为3200人【解析】试题分析:(1)由两幅统计图中的信息可知,喜欢B类的有60人,占被调查人数的10%,由此即可计算出被
25、调查的总人数为6010%=600(人);(2)由(1)中所得被调查总人数为600人结合统计图中已有的数据可得喜欢C类的人数为:600-180-60-240=120(人),喜欢C类的占总人数的百分比为:120600100%=20%,喜欢A类的占总人数的百分比为:180600100%=30%,由此即可将统计图补充完整;(3)由(2)中所得数据可得扇形统计图中A类所对应的圆心角度数为:36030%=108;(4)由扇形统计图中的信息:喜欢D类的占总人数的40%可得:800040%=3200(人);试题解析:(1)本次参加抽样调查的居民的人数是:6010%=600(人); 故答案为600;(2)由题意
26、得:C的人数为600(180+60+240)=600480=120(人),C的百分比为120600100%=20%;A的百分比为180600100%=30%;将两幅统计图补充完整如下所示:(3)根据题意得:36030%=108,图中表示“A”的圆心角的度数108;(4)800040%=3200(人),即爱吃D汤圆的人数约为3200人25、(1)1130;(1)3140岁年龄段的满意人数为66人,图见解析;【解析】(1)取扇形统计图中所占百分比最大的年龄段即可;(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图.【详解】(1)由扇形统计图可得1130岁的人数所占百分比最
27、大为39%,所以,人数最多的年龄段是1130岁;(1)根据题意,被调查的人中,总体印象感到满意的有:40083%=331人,3140岁年龄段的满意人数为:3315411653149=331116=66人,补全统计图如图【点睛】本题考点:条形统计图与扇形统计图.26、(1)本次共抽查了八年级学生是150人;(2)条形统计图补充见解析;(3)108;(4)估计该市12000名七年级学生中日人均阅读时间在0.51.5小时的40000人【解析】(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.51小时的人数,从而作出直方图;(3)利用360
28、乘以日人均阅读时间在11.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可【详解】(1)本次共抽查了八年级学生是:3020%150人;故答案为150;(2)日人均阅读时间在0.51小时的人数是:15030451(3)人均阅读时间在11.5小时对应的圆心角度数是: 故答案为108;(4) (人),答:估计该市12000名七年级学生中日人均阅读时间在0.51.5小时的40000人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小27、(1)C
29、(1,-4)(2)证明见解析;(3)APB=135,P(1,0)【解析】(1)作CHy轴于H,证明ABOBCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;(2)证明PBAQBC,根据全等三角形的性质得到PA=CQ;(3)根据C、P,Q三点共线,得到BQC=135,根据全等三角形的性质得到BPA=BQC=135,根据等腰三角形的性质求出OP,得到P点坐标【详解】(1)作CHy轴于H,则BCH+CBH=90,ABBC,ABO+CBH=90,ABO=BCH,在ABO和BCH中,ABOBCH,BH=OA=3,CH=OB=1,OH=OB+BH=4,C点坐标为(1,4);(2)PBQ=ABC=90,PBQABQ=ABCABQ,即PBA=QBC,在PBA和QBC中,PBAQBC,PA=CQ;(3)BPQ是等腰直角三角形,BQP=45,当C、P,Q三点共线时,BQC=135,由(2)可知,PBAQBC,BPA=BQC=135,OPB=45,OP=OB=1,P点坐标为(1,0)【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键