《陕西省榆林一中2023年高考仿真卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省榆林一中2023年高考仿真卷数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则的大小关系为( )ABCD2为双曲线的左焦点,过点的直线与圆交于、两点,(在、之间)与双曲线在第一象限的交点为,为
2、坐标原点,若,且,则双曲线的离心率为( )ABCD3的内角的对边分别为,若,则内角( )ABCD4已知全集,则集合的子集个数为( )ABCD5在中,角的对边分别为,若则角的大小为()ABCD6某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图: 则下列结论正确的是( ).A与2016年相比,2019年不上线的人数有所增加B与2016年相比,2019年一本达线人数减少C与2016年相比,2019年二本达线人数增加了0.3倍D2016年与2019年艺体达线人数相同7已知双曲线:(,)的右焦点
3、与圆:的圆心重合,且圆被双曲线的一条渐近线截得的弦长为,则双曲线的离心率为( )A2BCD38下列说法正确的是( )A命题“,”的否定形式是“,”B若平面,满足,则C随机变量服从正态分布(),若,则D设是实数,“”是“”的充分不必要条件9设复数满足,则( )A1B-1CD10如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是( )ABCD11若的展开式中的系数为150,则( )A20B15C10D2512 “”是“直线与互相平行”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件二、填空题:本题
4、共4小题,每小题5分,共20分。13函数的定义域是 14边长为2的正方形经裁剪后留下如图所示的实线围成的部分,将所留部分折成一个正四棱锥.当该棱锥的体积取得最大值时,其底面棱长为_.15若展开式中的常数项为240,则实数的值为_.16从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在平面直角坐标系xOy中,已知椭圆C:(ab0)的离心率为且经过点(1,),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D
5、在x轴上方)(1)求椭圆C的标准方程;(2)若AEF与BDF的面积之比为1:7,求直线l的方程18(12分)已知函数(1)时,求不等式解集;(2)若的解集包含于,求a的取值范围19(12分)棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取21根棉花纤维进行统计,结果如下表:(记纤维长度不低于311的为“长纤维”,其余为“短纤维”)纤维长度甲地(根数)34454乙地(根数)112116(1)由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过1.125的前
6、提下认为“纤维长度与土壤环境有关系”.甲地乙地总计长纤维短纤维总计附:(1);(2)临界值表;1111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)现从上述41根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.20(12分)如图,正方形是某城市的一个区域的示意图,阴影部分为街道,各相邻的两红绿灯之间的距离相等,处为红绿灯路口,红绿灯统一设置如下:先直行绿灯30秒,再左转绿灯30秒,然后是红灯1分钟,右转不受红绿灯影响,这样独立的
7、循环运行.小明上学需沿街道从处骑行到处(不考虑处的红绿灯),出发时的两条路线()等可能选择,且总是走最近路线.(1)请问小明上学的路线有多少种不同可能?(2)在保证通过红绿灯路口用时最短的前提下,小明优先直行,求小明骑行途中恰好经过处,且全程不等红绿灯的概率;(3)请你根据每条可能的路线中等红绿灯的次数的均值,为小明设计一条最佳的上学路线,且应尽量避开哪条路线?21(12分)已知非零实数满足 (1)求证:; (2)是否存在实数,使得恒成立?若存在,求出实数的取值范围; 若不存在,请说明理由22(10分)求函数的最大值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选
8、项中,只有一项是符合题目要求的。1、A【解析】根据指数函数的单调性,可得,再利用对数函数的单调性,将与对比,即可求出结论.【详解】由题知,则.故选:A.【点睛】本题考查利用函数性质比较大小,注意与特殊数的对比,属于基础题.2、D【解析】过点作,可得出点为的中点,由可求得的值,可计算出的值,进而可得出,结合可知点为的中点,可得出,利用勾股定理求得(为双曲线的右焦点),再利用双曲线的定义可求得该双曲线的离心率的值.【详解】如下图所示,过点作,设该双曲线的右焦点为,连接.,., ,为的中点,由双曲线的定义得,即,因此,该双曲线的离心率为.故选:D.【点睛】本题考查双曲线离心率的求解,解题时要充分分析
9、图形的形状,考查推理能力与计算能力,属于中等题.3、C【解析】由正弦定理化边为角,由三角函数恒等变换可得【详解】,由正弦定理可得,三角形中,故选:C【点睛】本题考查正弦定理,考查两角和的正弦公式和诱导公式,掌握正弦定理的边角互化是解题关键4、C【解析】先求B.再求,求得则子集个数可求【详解】由题=, 则集合,故其子集个数为故选C【点睛】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题5、A【解析】由正弦定理化简已知等式可得,结合,可得,结合范围,可得,可得,即可得解的值【详解】解:,由正弦定理可得:,故选A【点睛】本题主要考查了正弦定理在解三角形中的应用,
10、考查了计算能力和转化思想,属于基础题6、A【解析】设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D.【详解】设2016年高考总人数为x,则2019年高考人数为,2016年高考不上线人数为,2019年不上线人数为,故A正确;2016年高考一本人数,2019年高考一本人数,故B错误;2019年二本达线人数,2016年二本达线人数,增加了倍,故C错误;2016年艺体达线人数,2019年艺体达线人数,故D错误.故选:A.【点睛】本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目.7、A【解析】由已知,圆心M到渐近线的距离为,可得,又,解方
11、程即可.【详解】由已知,渐近线方程为,因为圆被双曲线的一条渐近线截得的弦长为,所以圆心M到渐近线的距离为,故,所以离心率为.故选:A.【点睛】本题考查双曲线离心率的问题,涉及到直线与圆的位置关系,考查学生的运算能力,是一道容易题.8、D【解析】由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【详解】命题“,”的否定形式是“,”,故A错误;,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关
12、的命题、正态分布、充分条件与必要条件等,是一道容易题.9、B【解析】利用复数的四则运算即可求解.【详解】由.故选:B【点睛】本题考查了复数的四则运算,需掌握复数的运算法则,属于基础题.10、C【解析】作出三视图所表示几何体的直观图,可得直观图为直三棱柱,并且底面为等腰直角三角形,即可求得外接球的半径,即可得外接球的体积.【详解】如图为几何体的直观图,上下底面为腰长为的等腰直角三角形,三棱柱的高为4,其外接球半径为,所以体积为.故选:C【点睛】本题考查三视图还原几何体的直观图、球的体积公式,考查空间想象能力、运算求解能力,求解时注意球心的确定.11、C【解析】通过二项式展开式的通项分析得到,即得
13、解.【详解】由已知得,故当时,于是有,则.故选:C【点睛】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.12、A【解析】利用两条直线互相平行的条件进行判定【详解】当时,直线方程为与,可得两直线平行;若直线与互相平行,则,解得,则“”是“直线与互相平行”的充分不必要条件,故选【点睛】本题主要考查了两直线平行的条件和性质,充分条件,必要条件的定义和判断方法,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】解:因为,故定义域为14、【解析】根据题意,建立棱锥体积的函数,利用导数求函数的最大值即可.【详解】设底面边长为,则斜高为,即此四棱锥的高
14、为,所以此四棱锥体积为,令,令,易知函数在时取得最大值.故此时底面棱长.故答案为:.【点睛】本题考查棱锥体积的求解,涉及利用导数研究体积最大值的问题,属综合中档题.15、3【解析】依题意可得二项式展开式的常数项为即可得到方程,解得即可;【详解】解:二项式的展开式中的常数项为,解得.故答案为:【点睛】本题考查二项式展开式中常数项的计算,属于基础题.16、【解析】基本事件总数,抽得的第一张卡片上的数不小于第二张卡片上的数包含的基本事件有10种,由此能求出抽得的第一张卡片上的数不小于第二张卡片上的数的概率【详解】从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数,抽
15、得的第一张卡片上的数不小于第二张卡片上的数包含的基本事件有10种,分别为:,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为故答案为:【点睛】本题考查古典概型概率的求法,考查运算求解能力,求解时注意辨别概率的模型三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用离心率和椭圆经过的点建立方程组,求解即可.(2)把面积之比转化为纵坐标之间的关系,联立方程结合韦达定理可求.【详解】解:(1)设焦距为2c,由题意知:;解得,所以椭圆的方程为.(2)由(1)知:F(1,0),设l:,D(,),E(,),0,;由得:,代入得:,又,故,因此,直线l的方
16、程为【点睛】本题主要考查椭圆方程的求解及椭圆中的面积问题,椭圆方程一般利用待定系数法,建立方程组进行求解,面积问题的合理转化是求解的关键,侧重考查数学运算的核心素养.18、(1)(2)【解析】(1) 代入可得对分类讨论即可得不等式的解集; (2)根据不等式在上恒成立去绝对值化简可得再去绝对值即可得关于 的不等式组解不等式组即可求得的取值范围【详解】(1)当时,不等式可化为,当时,不等式为,解得;当时,不等式为,无解;当时,不等式为,解得,综上,原不等式的解集为(2)因为的解集包含于,则不等式可化为,即解得,由题意知,解得,所以实数a的取值范围是【点睛】本题考查了绝对值不等式的解法分类讨论解绝对
17、值不等式的应用,含参数不等式的解法.难度一般.19、(1)在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系”(2)见解析【解析】试题分析:(1)可以根据所给表格填出列联表,利用列联表求出,结合所给数据,应用独立性检验知识可作出判断;(2)写出的所有可能取值,并求出对应的概率,可列出分布列并进一步求出的数学期望试题解析:()根据已知数据得到如下列联表:甲地乙地总计长纤维91625短纤维11415总计212141根据列联表中的数据,可得所以,在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系” ()由表可知在8根中乙地“短纤维”的根数为,的可能取值为:1,1,2,3, , 的分布列为
18、:1123 20、(1)6种;(2);(3).【解析】(1)从4条街中选择2条横街即可;(2)小明途中恰好经过处,共有4条路线,即,分别对4条路线进行分析计算概率;(3)分别对小明上学的6条路线进行分析求均值,均值越大的应避免.【详解】(1)路途中可以看成必须走过2条横街和2条竖街,即从4条街中选择2条横街即可,所以路线总数为条. (2)小明途中恰好经过处,共有4条路线:当走时,全程不等红绿灯的概率;当走时,全程不等红绿灯的概率;当走时,全程不等红绿灯的概率;当走时,全程不等红绿灯的概率.所以途中恰好经过处,且全程不等信号灯的概率.(3)设以下第条的路线等信号灯的次数为变量,则第一条:,则;第
19、二条:,则;另外四条路线:;,则综上,小明上学的最佳路线为;应尽量避开.【点睛】本题考查概率在实际生活中的综合应用问题,考查学生逻辑推理与运算能力,是一道有一定难度的题.21、(1)见解析(2)存在,【解析】(1)利用作差法即可证出.(2)将不等式通分化简可得,讨论或,分离参数,利用基本不等式即可求解.【详解】又即即当时,即恒成立(当且仅当时取等号),故当时恒成立(当且仅当时取等号),故综上,【点睛】本题考查了作差法证明不等式、基本不等式求最值、考查了分类讨论的思想,属于基础题.22、【解析】试题分析:由柯西不等式得试题解析:因为, 所以 等号当且仅当,即时成立所以的最大值为 考点:柯西不等式求最值