《云南省曲靖一中2023年高考仿真卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省曲靖一中2023年高考仿真卷数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图是国家统计局公布的年入境游客(单位:万人次)的变化情况,则下列结论错误的是( ) A2014年我国
2、入境游客万人次最少B后4年我国入境游客万人次呈逐渐增加趋势C这6年我国入境游客万人次的中位数大于13340万人次D前3年我国入境游客万人次数据的方差小于后3年我国入境游客万人次数据的方差2设,则( )ABCD3中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位用纵式表示,十位、千位、十万位用横式表示,则56846可用算筹表示为( )ABCD4已知,则的大小关系为ABCD5设函数,则,的大致图象大致是的( )ABCD6函数在上的大致图象是( )ABCD7对于正在培
3、育的一颗种子,它可能1天后发芽,也可能2天后发芽,.下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是( )发芽所需天数1234567种子数43352210A2B3C3.5D48一个四面体所有棱长都是4,四个顶点在同一个球上,则球的表面积为( )ABCD9我国古代数学著作九章算术有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是( )(结果采取“只入不舍
4、”的原则取整数,相关数据:,)ABCD10正的边长为2,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为( )ABCD11已知函数,若对任意的总有恒成立,记的最小值为,则最大值为( )A1BCD12某几何体的三视图如图所示,则此几何体的体积为( )AB1CD二、填空题:本题共4小题,每小题5分,共20分。13在中,、的坐标分别为,且满足,为坐标原点,若点的坐标为,则的取值范围为_.14在平面直角坐标系中,曲线在点处的切线与x轴相交于点A,其中e为自然对数的底数.若点,的面积为3,则的值是_.15二项式的展开式的各项系数之和为_,含项的系数为_16已知椭圆与双曲线有相同的焦点、
5、,其中为左焦点.点为两曲线在第一象限的交点,、分别为曲线、的离心率,若是以为底边的等腰三角形,则的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最小值,若实数,满足,求的最小值.18(12分)已知椭圆C:()的左、右焦点分别为,离心率为,且过点.(1)求椭圆C的方程;(2)过左焦点的直线l与椭圆C交于不同的A,B两点,若,求直线l的斜率k.19(12分)已知,函数的最小值为.(1)求证:;(2)若恒成立,求实数的最大值.20(12分)在直角坐标系中,曲线的参数方程为(为参数).点在曲线上,点
6、满足.(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求动点的轨迹的极坐标方程;(2)点,分别是曲线上第一象限,第二象限上两点,且满足,求的值.21(12分)椭圆的左、右焦点分别为,椭圆上两动点使得四边形为平行四边形,且平行四边形的周长和最大面积分别为8和.(1)求椭圆的标准方程;(2)设直线与椭圆的另一交点为,当点在以线段为直径的圆上时,求直线的方程.22(10分)已知函数.(1)讨论的单调性;(2)若,设,证明:,使.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】ABD可通过统计图直接分析得出结论,C可通过
7、计算中位数判断选项是否正确.【详解】A由统计图可知:2014年入境游客万人次最少,故正确;B由统计图可知:后4年我国入境游客万人次呈逐渐增加趋势,故正确;C入境游客万人次的中位数应为与的平均数,大于万次,故正确;D由统计图可知:前年的入境游客万人次相比于后年的波动更大,所以对应的方差更大,故错误.故选:D.【点睛】本题考查统计图表信息的读取以及对中位数和方差的理解,难度较易.处理问题的关键是能通过所给统计图,分析出对应的信息,对学生分析问题的能力有一定要求.2、D【解析】由不等式的性质及换底公式即可得解.【详解】解:因为,则,且,所以,又,即,则,即,故选:D.【点睛】本题考查了不等式的性质及
8、换底公式,属基础题.3、B【解析】根据题意表示出各位上的数字所对应的算筹即可得答案【详解】解:根据题意可得,各个数码的筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示,用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为中的故选:【点睛】本题主要考查学生的合情推理与演绎推理,属于基础题4、D【解析】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,即,即,综上可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相
9、同,不能直接利用函数的单调性进行比较这就必须掌握一些特殊方法在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确5、B【解析】采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项C即可求解.【详解】对于选项A:由题意知,函数的定义域为,其关于原点对称,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B【点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查
10、运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.6、D【解析】讨论的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【详解】当时,则,所以函数在上单调递增,令,则,根据三角函数的性质,当时,故切线的斜率变小,当时,故切线的斜率变大,可排除A、B;当时,则,所以函数在上单调递增,令 ,当时,故切线的斜率变大,当时,故切线的斜率变小,可排除C,故选:D【点睛】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.7、C【解析】根据表中数据,即可容易求得中位数.【详解】由图表可知,种子发芽天数的中位数为,
11、故选:C.【点睛】本题考查中位数的计算,属基础题.8、A【解析】将正四面体补成正方体,通过正方体的对角线与球的半径关系,求解即可【详解】解:如图,将正四面体补形成一个正方体,正四面体的外接球与正方体的外接球相同,四面体所有棱长都是4,正方体的棱长为,设球的半径为,则,解得,所以,故选:A【点睛】本题主要考查多面体外接球问题,解决本题的关键在于,巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化,属于中档题9、C【解析】由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出【详解】由题意可得莞草与蒲草第n天的长度分别为 据题意得:, 解得2n12
12、, n21故选:C【点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题10、D【解析】如图所示,设的中点为,的外接圆的圆心为,四面体的外接球的球心为,连接,利用正弦定理可得,利用球心的性质和线面垂直的性质可得四边形为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积.【详解】如图所示,设的中点为,外接圆的圆心为,四面体的外接球的球心为,连接,则平面,.因为,故,因为,故.由正弦定理可得,故,又因为,故.因为,故平面,所以,因为平面,平面,故,故,所以四边形为平行四边形,所以,所以,故外接球的半径为,外接球的表面积为.故选:D.【点睛】本题考查平
13、面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形中来计算,本题有一定的难度.11、C【解析】对任意的总有恒成立,因为,对恒成立,可得,令,可得,结合已知,即可求得答案.【详解】对任意的总有恒成立,对恒成立,令,可得令,得当,当,故令,得 当时,当,当时,故选:C.【点睛】本题主要考查了根据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算能力,属于难题.12、C【解析】该几何体为三棱锥,其直观图如图所示,体积故选.二
14、、填空题:本题共4小题,每小题5分,共20分。13、【解析】由正弦定理可得点在曲线上,设,则,将代入可得,利用二次函数的性质可得范围.【详解】解:由正弦定理得,则点在曲线上,设,则,又,因为,则,即的取值范围为.故答案为:.【点睛】本题考查双曲线的定义,考查向量数量积的坐标运算,考查学生计算能力,有一定的综合性,但难度不大.14、【解析】对求导,再根据点的坐标可得切线方程,令,可得点横坐标,由的面积为3,求解即得.【详解】由题,切线斜率,则切线方程为,令,解得,又的面积为3,解得.故答案为:【点睛】本题考查利用导数研究函数的切线,难度不大.15、 【解析】将代入二项式可得展开式各项系数之和,写
15、出二项展开式通项,令的指数为,求出参数的值,代入通项即可得出项的系数.【详解】将代入二项式可得展开式各项系数和为.二项式的展开式通项为,令,解得,因此,展开式中含项的系数为.故答案为:;.【点睛】本题考查了二项式定理及二项式展开式通项公式,属基础题16、【解析】设,由椭圆和双曲线的定义得到,根据是以为底边的等腰三角形,得到 ,从而有,根据,得到,再利用导数法求的范围.【详解】设,由椭圆的定义得 ,由双曲线的定义得,所以,因为是以为底边的等腰三角形,所以,即 ,因为,所以 ,因为,所以,所以,即,而,因为,所以在上递增,所以.故答案为:【点睛】本题主要考查椭圆,双曲线的定义和几何性质,还考查了运
16、算求解的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)首先通过对绝对值内式子符号的讨论,将不等式转化为一元一次不等式组,再分别解各不等式组,最后求各不等式组解集的并集,得到所求不等式的解集;(2)首先确定m的值,然后利用柯西不等式即可证得题中的不等式.【详解】(1)因为函数定义域为,即恒成立,所以恒成立由单调性可知当时,有最大值为4,即;(2)由(1)知,由柯西不等式知所以,即的最小值为.当且仅当,时,等号成立【点睛】本题主要考查绝对值不等式的解法,柯西不等式及其应用,意在考查学生的转化能力和计算求解能力.18、(1)(2)直
17、线l的斜率为或【解析】(1)根据已知列出方程组即可解得椭圆方程;(2)设直线方程,与椭圆方程联立, 转化为,借助向量的数量积的坐标表示,及韦达定理即可求得结果.【详解】(1)由题意得解得故椭圆C的方程为.(2)直线l的方程为,设,则由方程组消去y得,所以,由,得,所以,又所以,即所以,因此,直线l的斜率为或.【点睛】本题考查椭圆的标准方程,考查直线和椭圆的位置关系,考查学生的计算求解能力,难度一般.19、(1)见解析;(2)最大值为.【解析】(1)将函数表示为分段函数,利用函数的单调性求出该函数的最小值,进而可证得结论成立;(2)由可得出,并将代数式与相乘,展开后利用基本不等式可求得的最小值,
18、进而可得出实数的最大值.【详解】(1).当时,函数单调递减,则;当时,函数单调递增,则;当时,函数单调递增,则.综上所述,所以;(2)因为恒成立,且,所以恒成立,即.因为,当且仅当时等号成立,所以,实数的最大值为.【点睛】本题考查含绝对值函数最值的求解,同时也考查了利用基本不等式恒成立求参数,考查推理能力与计算能力,属于中等题.20、(1)();(2)【解析】(1)由已知,曲线的参数方程消去t后,要注意x的范围,再利用普通方程与极坐标方程的互化公式运算即可;(2)设,由(1)可得,相加即可得到证明.【详解】(1),由题可知:,:().(2)因为,设,则,.【点睛】本题考查参数方程、普通方程、极
19、坐标方程间的互化,考查学生的计算能力,是一道容易题.21、(1)(2)或【解析】(1)根据题意计算得到,得到椭圆方程.(2)设,联立方程得到,根据,计算得到答案.【详解】(1)由平行四边形的周长为8,可知,即.由平行四边形的最大面积为,可知,又,解得.所以椭圆方程为.(2)注意到直线的斜率不为0,且过定点.设,由消得,所以,因为,所以.因为点在以线段为直径的圆上,所以,即,所以直线的方程或.【点睛】本题考查了椭圆方程,根据直线和椭圆的位置关系求直线,将题目转化为是解题的关键.22、(1)见解析;(2)证明见解析.【解析】(1),分,四种情况讨论即可;(2)问题转化为,利用导数找到与即可证明.【详解】(1).当时,恒成立,当时,;当时,所以,在上是减函数,在上是增函数.当时,.当时,;当时,;当时,所以,在上是减函数,在上是增函数,在上是减函数.当时,则在上是减函数.当时,当时,;当时,;当时,所以,在上是减函数,在上是增函数,在上是减函数.(2)由题意,得.由(1)知,当,时,.令,故在上是减函数,有,所以,从而.,则,令,显然在上是增函数,且,所以存在使,且在上是减函数,在上是增函数,所以,所以,命题成立.【点睛】本题考查利用导数研究函数的单调性以及证明不等式的问题,考查学生逻辑推理能力,是一道较难的题.