《辽宁省本溪高级中学2023年高考数学三模试卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省本溪高级中学2023年高考数学三模试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1等比数列的各项均为正数,且,则( )A12B10C8D2刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国
2、古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(如图所示),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到的近似值为( )ABCD3如图,在正四棱柱中,分别为的中点,异面直线与所成角的余弦值为,则( )A直线与直线异面,且B直线与直线共面,且C直线与直线异面,且D直线与直线共面,且4已知向量,若,则与夹角的余弦值为( )ABCD5某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学
3、习人脸识别,则这6名研究生不同的分配方向共有( )A480种B360种C240种D120种6已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为( )ABCD7已知为等差数列,若,则( )A1B2C3D68南宋数学家杨辉在详解九章算法和算法通变本末中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:)A1624B1024C1198D15609已知数列
4、为等差数列,为其前 项和,则( )ABCD10已知焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为( )A或B或C或D11陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的帝京景物略一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )ABCD12已知向量,夹角为, ,则( )A2B4CD二、填空题:本题共4小题,每小题5分,共20分。13已知,复数且(为虚数单位),则_,_14设全集,集合,则集合_.15设函数,其中若存在唯一的整数使得,则实数的取值范围是_16复数为虚数单
5、位)的虚部为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,曲线的参数方程为(为参数,以坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,曲线的极坐标方程为(1)求曲线的极坐标方程和曲线的普通方程;(2)设射线与曲线交于不同于极点的点,与曲线交于不同于极点的点,求线段的长18(12分)为响应“坚定文化自信,建设文化强国”,提升全民文化修养,引领学生“读经典用经典”,某广播电视台计划推出一档“阅读经典”节目.工作人员在前期的数据采集中,在某高中学校随机抽取了120名学生做调查,统计结果显示:样本中男女比例为3:2,而男生中喜欢阅读中国古典
6、文学和不喜欢的比例是7:5,女生中喜欢阅读中国古典文学和不喜欢的比例是5:3.(1)填写下面列联表,并根据联表判断是否有的把握认为喜欢阅读中国古典文学与性别有关系?男生女生总计喜欢阅读中国古典文学不喜欢阅读中国古典文学总计(2)为做好文化建设引领,实验组把该校作为试点,和该校的学生进行中国古典文学阅读交流.实验人员已经从所调查的120人中筛选出4名男生和3名女生共7人作为代表,这7个代表中有2名男生代表和2名女生代表喜欢中国古典文学.现从这7名代表中任选3名男生代表和2名女生代表参加座谈会,记为参加会议的人中喜欢古典文学的人数,求5的分布列及数学期望附表及公式:.19(12分)已知,均为给定的
7、大于1的自然数,设集合,()当,时,用列举法表示集合;()当时,且集合满足下列条件:对任意,;证明:()若,则(集合为集合在集合中的补集);()为一个定值(不必求出此定值);()设,其中,若,则20(12分)已知函数有两个极值点,.(1)求实数的取值范围;(2)证明:.21(12分)设点分别是椭圆的左,右焦点,为椭圆上任意一点,且的最小值为1(1)求椭圆的方程;(2)如图,直线与轴交于点,过点且斜率的直线与椭圆交于两点,为线段的中点,直线交直线于点,证明:直线22(10分) 选修4-5:不等式选讲设函数.(1)求不等式的解集;(2)已知关于的不等式在上有解,求实数的取值范围.参考答案一、选择题
8、:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由等比数列的性质求得,再由对数运算法则可得结论【详解】数列是等比数列,故选:B.【点睛】本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键2、A【解析】设圆的半径为,每个等腰三角形的顶角为,则每个等腰三角形的面积为,由割圆术可得圆的面积为,整理可得,当时即可为所求.【详解】由割圆术可知当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,设圆的半径为,每个等腰三角形的顶角为,所以每个等腰三角形的面积为,所以圆的面积为,即,所以当时,可得,故选:A【点睛】本题考查
9、三角形面积公式的应用,考查阅读分析能力.3、B【解析】连接,由正四棱柱的特征可知,再由平面的基本性质可知,直线与直线共面.,同理易得,由异面直线所成的角的定义可知,异面直线与所成角为,然后再利用余弦定理求解.【详解】如图所示:连接,由正方体的特征得,所以直线与直线共面.由正四棱柱的特征得,所以异面直线与所成角为.设,则,则,由余弦定理,得.故选:B【点睛】本题主要考查异面直线的定义及所成的角和平面的基本性质,还考查了推理论证和运算求解的能力,属于中档题.4、B【解析】直接利用向量的坐标运算得到向量的坐标,利用求得参数m,再用计算即可.【详解】依题意, 而, 即, 解得, 则.故选:B.【点睛】
10、本题考查向量的坐标运算、向量数量积的应用,考查运算求解能力以及化归与转化思想.5、B【解析】将人脸识别方向的人数分成:有人、有人两种情况进行分类讨论,结合捆绑计算出不同的分配方法数.【详解】当人脸识别方向有2人时,有种,当人脸识别方向有1人时,有种,共有360种.故选:B【点睛】本小题主要考查简单排列组合问题,考查分类讨论的数学思想方法,属于基础题.6、D【解析】由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e.【详解】由题意得,.故选:D.【点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.7、B【解析】利用等差数列的通项公式列出方
11、程组,求出首项和公差,由此能求出【详解】an为等差数列,,,解得10,d3,+4d10+111故选:B【点睛】本题考查等差数列通项公式求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题8、B【解析】根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得.【详解】依题意:1,4,8,14,23,36,54,两两作差得:3,4,6,9,13,18,两两作差得:1,2,3,4,5,设该数列为,令,设的前项和为,又令,设的前项和为.易,进而得,所以,则,所以,所以.故选:B【点睛】本小题主要考查新定义数列的理解和运用,考查累加法求数列的通项公式,考查
12、化归与转化的数学思想方法,属于中档题.9、B【解析】利用等差数列的性质求出的值,然后利用等差数列求和公式以及等差中项的性质可求出的值.【详解】由等差数列的性质可得,.故选:B.【点睛】本题考查等差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题.10、A【解析】过作与准线垂直,垂足为,利用抛物线的定义可得,要使最大,则应最大,此时与抛物线相切,再用判别式或导数计算即可.【详解】过作与准线垂直,垂足为,则当取得最大值时,最大,此时与抛物线相切,易知此时直线的斜率存在,设切线方程为,则.则,则直线的方程为.故选:A.【点睛】本题考查直线与抛物线的位置关系,涉及到抛物线的定义,
13、考查学生转化与化归的思想,是一道中档题.11、C【解析】根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.【详解】最上面圆锥的母线长为,底面周长为,侧面积为,下面圆锥的母线长为,底面周长为,侧面积为,没被挡住的部分面积为,中间圆柱的侧面积为.故表面积为,故选C.【点睛】本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.12、A【解析】根据模长计算公式和数量积运算,即可容易求得结果.【详解】由于,故选:A.【点睛】本题考查向量的数量积运算,模长的求解,属综合基础题.二、填空题:本题共4小题,每小题5分,共20分。13、 【解析】复
14、数且,故答案为,14、【解析】分别解得集合A与集合B的补集,再由集合交集的运算法则计算求得答案.【详解】由题可知,集合A中集合B的补集,则故答案为:【点睛】本题考查集合的交集与补集运算,属于基础题.15、【解析】根据分段函数的解析式画出图像,再根据存在唯一的整数使得数形结合列出临界条件满足的关系式求解即可.【详解】解:函数,且画出的图象如下:因为,且存在唯一的整数使得,故与在时无交点,得;又,过定点又由图像可知,若存在唯一的整数使得时,所以,存在唯一的整数使得所以.根据图像可知,当时, 恒成立.综上所述, 存在唯一的整数使得,此时故答案为:【点睛】本题主要考查了数形结合分析参数范围的问题,需要
15、根据题意分别分析定点右边的整数点中为满足条件的唯一整数,再数形结合列出时的不等式求的范围.属于难题.16、1【解析】试题分析:,即虚部为1,故填:1.考点:复数的代数运算三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】曲线的参数方程转换为直角坐标方程为再用极直互化公式求解,曲线的极坐标方程用极直互化公式转换为直角坐标方程射线与曲线的极坐标方程联解求出,射线与曲线的极坐标方程联解求出, 再用 得解【详解】解:曲线的参数方程为(为参数,转换为直角坐标方程为把,代入得:曲线的极坐标方程为转换为直角坐标方程为设射线与曲线交于不同于极点的点,所以,解得与曲线交于
16、不同于极点的点,所以,解得,所以【点睛】本题考查参数方程、极坐标方程直角坐标方程相互转换及极坐标下利用和的几何意义求线段的长.(1)直角坐标方程化为极坐标方程只需将直角坐标方程中的分别用,代替即可得到相应极坐标方程参数方程化为极坐标方程必须先化成直角坐标方程再转化为极坐标方程.(2)直接求解,能达到化繁为简的解题目的;如果几何关系不容易通过极坐标表示时,可以先化为直角坐标方程,将不熟悉的问题转化为熟悉的问题加以解决.18、(1)见解析,没有(2)见解析,【解析】(1)根据题目所给数据填写列联表,计算出的值,由此判断出没有的把握认为喜欢阅读中国古典文学与性别有关系.(2)先判断出的所有可能取值,
17、然后根据古典概型概率计算公式,计算出分布列并求得数学期望.【详解】(1)男生女生总计喜欢阅读中国古典文学423072不喜欢阅读中国古典文学301848总计7248120所以,没有的把握认为喜欢阅读中国古典文学与性别有关系.(2)设参加座谈会的男生中喜欢中国古典文学的人数为,女生中喜欢古典文学的人数为,则.且;.所以的分布列为则.【点睛】本小题主要考查列联表独立性检验,考查随机变量分布列和数学期望的求法,考查数据处理能力,属于中档题.19、();()()详见解析()详见解析.()详见解析.【解析】()当,时,即可得出()(i)当时,2,3,又,必然有,否则得出矛盾(ii)由可得又,即可得出为定值
18、(iii)由设,其中,2,可得,通过求和即可证明结论【详解】()解:当,时,()证明:(i)当时,2,3,又,必然有,否则,而,与已知对任意,矛盾因此有(ii),为定值(iii)由设,其中,2,【点睛】本题主要考查等差数列与等比数列的通项公式求和公式,考查了推理能力与计算能力,属于难题20、(1) (2)证明见解析【解析】(1)先求得导函数,根据两个极值点可知有两个不等实根,构造函数,求得;讨论和两种情况,即可确定零点的情况,即可由零点的情况确定的取值范围;(2)根据极值点定义可知,代入不等式化简变形后可知只需证明;构造函数,并求得,进而判断的单调区间,由题意可知,并设,构造函数,并求得,即可
19、判断在内的单调性和最值,进而可得,即可由函数性质得,进而由单调性证明,即证明,从而证明原不等式成立.【详解】(1)函数则,因为存在两个极值点,所以有两个不等实根.设,所以.当时,所以在上单调递增,至多有一个零点,不符合题意.当时,令得,0减极小值增所以,即.又因为,所以在区间和上各有一个零点,符合题意,综上,实数的取值范围为.(2)证明:由题意知,所以,.要证明,只需证明,只需证明.因为,所以.设,则,所以在上是增函数,在上是减函数.因为,不妨设,设,则,当时,所以,所以在上是增函数,所以,所以,即.因为,所以,所以.因为,且在上是减函数,所以,即,所以原命题成立,得证.【点睛】本题考查了利用
20、导数研究函数的极值点,由导数证明不等式,构造函数法的综合应用,极值点偏移证明不等式成立的应用,是高考的常考点和热点,属于难题.21、(1)(2)见解析【解析】(1)设,求出后由二次函数知识得最小值,从而得,即得椭圆方程;(2)设直线的方程为,代入椭圆方程整理,设,由韦达定理得,设,利用三点共线,求得,然后验证即可【详解】解:(1)设,则,所以,因为所以当时,值最小,所以,解得,(舍负)所以,所以椭圆的方程为,(2)设直线的方程为,联立,得设,则,设,因为三点共线,又所以,解得而所以直线轴,即【点睛】本题考查求椭圆方程,考查直线与椭圆相交问题直线与椭圆相交问题,采取设而不求思想,设,设直线方程,应用韦达定理,得出,再代入题中需要计算可证明的式子参与化简变形22、 (1) (2) 【解析】(1)零点分段去绝对值解不等式即可(2)由题在上有解,去绝对值分离变量a即可.【详解】(1)不等式,即等价于 或或 解得 ,所以原不等式的解集为; (2)当时,不等式,即,所以在上有解 即在上有解, 所以,【点睛】本题考查绝对值不等式解法,不等式有解求参数,熟记零点分段,熟练处理不等式有解问题是关键,是中档题.