《贵州省铜仁市重点中学2023年中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《贵州省铜仁市重点中学2023年中考试题猜想数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大如图是对某球员罚球训练时命中情况的统计:下面三个推断:当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1其中合理的是( )ABCD2如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(
3、无论沿铁环如何滑动)不可能排成的情形是()ABCD3如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是ABCD4如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,O的半径为1,则APBP的最小值为A1BCD5如图,已知菱形ABCD的对角线ACBD的长分别为6cm、8cm,AEBC于点E,则AE的长是()ABCD6如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )ABCD7下列计算正确的是Aa2a22a4 B(a2)3a6 C3a26a23a2 D(a2)2a248将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉
4、字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )ABCD9如图,ABC中AB两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作ABC的位似图形ABC,且ABC与ABC的位似比为2:1设点B的对应点B的横坐标是a,则点B的横坐标是()ABCD10如图,立体图形的俯视图是ABCD11抛物线ymx28x8和x轴有交点,则m的取值范围是()Am2Bm2Cm2且m0Dm2且m012如图,三角形纸片ABC,AB10cm,BC7cm,AC6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,
5、折痕为BD,则AED的周长为()A9cmB13cmC16cmD10cm二、填空题:(本大题共6个小题,每小题4分,共24分)13当x=_时,分式 值为零14如图,在ABC中,AB5,AC4,BC3,按以下步骤作图:以A为圆心,任意长为半径作弧,分别交AB、AC于点M、N;分别以点M、N为圆心,以大于的长为半径作弧,两弧相交于点E;作射线AE;以同样的方法作射线BF,AE交BF于点O,连接OC,则OC_.15如图所示:在平面直角坐标系中,OCB的外接圆与y轴交于A(0,),OCB=60,COB=45,则OC= 16如图,ABC的两条高AD,BE相交于点F,请添加一个条件,使得ADCBEC(不添加
6、其他字母及辅助线),你添加的条件是_17分解因式:_.18如图,在正方形ABCD外取一点E,连接AE、BE、DE过点A作AE的垂线交DE于点P若AE=AP=1,PB=下列结论:APDAEB;点B到直线AE的距离为;EBED;SAPD+SAPB=1+;S正方形ABCD=4+其中正确结论的序号是 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在平面直角坐标系中,抛物线C1经过点A(4,0)、B(1,0),其顶点为(1)求抛物线C1的表达式;(2)将抛物线C1绕点B旋转180,得到抛物线C2,求抛物线C2的表达式;(3)再将抛物线C2沿x轴向右平移
7、得到抛物线C3,设抛物线C3与x轴分别交于点E、F(E在F左侧),顶点为G,连接AG、DF、AD、GF,若四边形ADFG为矩形,求点E的坐标20(6分)先化简,再求值:(x3)(1),其中x=121(6分)解方程(2x+1)2=3(2x+1)22(8分)如图,已知直线与抛物线相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使POB与POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且ABQ为直角三角形,求点Q的坐标23(8分)如图,O中,AB是O的直径,G为弦AE的中点
8、,连接OG并延长交O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC(1)求证:BC是O的切线;(2)O的半径为5,tanA=,求FD的长24(10分)嘉淇在做家庭作业时,不小心将墨汁弄倒,恰好覆盖了题目的一部分:计算:(7)0+|1|+()1+(1)2018,经询问,王老师告诉题目的正确答案是1(1)求被覆盖的这个数是多少?(2)若这个数恰好等于2tan(15),其中为三角形一内角,求的值25(10分)计算:|2|+2cos30()2+(tan45)126(12分)如图,在RtABC中,ABAC,D、E是斜边BC上的两点,EAD45,将ADC绕点A顺时针旋转90,得到A
9、FB,连接EF求证:EFED;若AB2,CD1,求FE的长27(12分)如图,在ABC中,(1)求作:BAD=C,AD交BC于D(用尺规作图法,保留作图痕迹,不要求写作法)(2)在(1)条件下,求证:AB2=BDBC参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:4115000.822,但“罚球命中”的概率不一定是0.822,故错误;随着罚球次数的增加,“罚球命中”的频率总在0.2
10、附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2故正确;虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故错误故选:B【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.2、D【解析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1故选D【点睛】本题考查了规律型:图形的变化类,找准铁片1
11、,1,5,6在铁环上的顺序不变是解题的关键3、D【解析】本题主要考查二次函数的解析式【详解】解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为.故选D.【点睛】本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.4、C【解析】作点A关于MN的对称点A,连接AB,交MN于点P,则PA+PB最小,连接OA,AA.点A与A关于MN对称,点A是半圆上的一个三等分点,AON=AON=60,PA=PA,点B是弧AN的中点,BON=30
12、 ,AOB=AON+BON=90,又OA=OA=1,AB=PA+PB=PA+PB=AB=故选:C.5、D【解析】根据菱形的性质得出BO、CO的长,在RTBOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BCAE,可得出AE的长度【详解】四边形ABCD是菱形,CO=AC=3,BO=BD=,AOBO,又,BCAE=24,即故选D点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分6、D【解析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.7、B【解析】
13、【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A. a2a2a4 ,故A选项错误;B. (a2)3a6 ,正确;C. 3a26a2-3a2 ,故C选项错误;D. (a2)2a24a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.8、B【解析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.9、D【解析】设
14、点B的横坐标为x,然后表示出BC、BC的横坐标的距离,再根据位似变换的概念列式计算【详解】设点B的横坐标为x,则B、C间的横坐标的长度为1x,B、C间的横坐标的长度为a+1,ABC放大到原来的2倍得到ABC,2(1x)a+1,解得x(a+3),故选:D【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键10、C【解析】试题分析:立体图形的俯视图是C故选C考点:简单组合体的三视图11、C【解析】根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围【详解】解:抛物线和轴有交点, ,
15、解得:且故选【点睛】本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键12、A【解析】试题分析:由折叠的性质知,CD=DE,BC=BE易求AE及AED的周长解:由折叠的性质知,CD=DE,BC=BE=7cmAB=10cm,BC=7cm,AE=ABBE=3cmAED的周长=AD+DE+AE=AC+AE=6+3=9(cm)故选A点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】试题解
16、析:分式的值为0,则: 解得: 故答案为14、【解析】直接利用勾股定理的逆定理结合三角形内心的性质进而得出答案【详解】过点O作ODBC,OGAC,垂足分别为D,G,由题意可得:O是ACB的内心,AB=5,AC=4,BC=3,BC2+AC2=AB2,ABC是直角三角形,ACB=90,四边形OGCD是正方形,DO=OG=1,CO=故答案为【点睛】此题主要考查了基本作图以及三角形的内心,正确得出OD的长是解题关键15、1+【解析】试题分析:连接AB,由圆周角定理知AB必过圆心M,RtABO中,易知BAO=OCB=60,已知了OA=,即可求得OB的长;过B作BDOC,通过解直角三角形即可求得OD、BD
17、、CD的长,进而由OC=OD+CD求出OC的长解:连接AB,则AB为M的直径RtABO中,BAO=OCB=60,OB=OA=过B作BDOC于DRtOBD中,COB=45,则OD=BD=OB=RtBCD中,OCB=60,则CD=BD=1OC=CD+OD=1+故答案为1+点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键16、AC=BC【解析】分析:添加AC=BC,根据三角形高的定义可得ADC=BEC=90,再证明EBC=DAC,然后再添加AC=BC可利用AAS判定ADCBEC详解:添加AC=BC,ABC的两条高AD,BE,AD
18、C=BEC=90,DAC+C=90,EBC+C=90,EBC=DAC,在ADC和BEC中,ADCBEC(AAS),故答案为:AC=BC点睛:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角17、a(a 4)2【解析】首先提取公因式a,进而利用完全平方公式分解因式得出即可【详解】 故答案为:【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.18、【解析】利用同角的余角相等,易得EA
19、B=PAD,再结合已知条件利用SAS可证两三角形全等;过B作BFAE,交AE的延长线于F,利用中的BEP=90,利用勾股定理可求BE,结合AEP是等腰直角三角形,可证BEF是等腰直角三角形,再利用勾股定理可求EF、BF;利用中的全等,可得APD=AEB,结合三角形的外角的性质,易得BEP=90,即可证;连接BD,求出ABD的面积,然后减去BDP的面积即可;在RtABF中,利用勾股定理可求AB2,即是正方形的面积【详解】EAB+BAP=90,PAD+BAP=90,EAB=PAD,又AE=AP,AB=AD,在APD和AEB中,APDAEB(SAS);故此选项成立;APDAEB,APD=AEB,AE
20、B=AEP+BEP,APD=AEP+PAE,BEP=PAE=90,EBED;故此选项成立;过B作BFAE,交AE的延长线于F,AE=AP,EAP=90,AEP=APE=45,又中EBED,BFAF,FEB=FBE=45,又BE=,BF=EF=,故此选项不正确;如图,连接BD,在RtAEP中,AE=AP=1,EP=,又PB=,BE=,APDAEB,PD=BE=,SABP+SADP=SABD-SBDP=S正方形ABCD-DPBE=(4+)-=+故此选项不正确EF=BF=,AE=1,在RtABF中,AB2=(AE+EF)2+BF2=4+,S正方形ABCD=AB2=4+,故此选项正确故答案为【点睛】本
21、题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)y;(2);(3)E(,0)【解析】(1)根据抛物线C1的顶点坐标可设顶点式将点B坐标代入求解即可;(2)由抛物线C1绕点B旋转180得到抛物线C2知抛物线C2的顶点坐标,可设抛物线C2的顶点式,根据旋转后抛物线C2开口朝下,且形状不变即可确定其表达式;(3)作GKx轴于G,DHAB于H,由题意GK=DH=3,AH=HB=EK=KF,结合矩形的性质利用两组对应角分别相等的两个三角形相似可证AGK
22、GFK,由其对应线段成比例的性质可知AK长,结合A、B点坐标可知BK、BE、OE长,可得点E坐标.【详解】解:(1)抛物线C1的顶点为,可设抛物线C1的表达式为y,将B(1,0)代入抛物线解析式得:,解得:a,抛物线C1的表达式为y,即y(2)设抛物线C2的顶点坐标为 抛物线C1绕点B旋转180,得到抛物线C2,即点与点关于点B(1,0)对称 抛物线C2的顶点坐标为()可设抛物线C2的表达式为y抛物线C2开口朝下,且形状不变 抛物线C2的表达式为y,即(3)如图,作GKx轴于G,DHAB于H由题意GK=DH=3,AH=HB=EK=KF,四边形AGFD是矩形,AGF=GKF=90,AGK+KGF
23、=90,KGF+GFK=90,AGK=GFKAKG=FKG=90,AGKGFK,AK=6,BE=BKEK=3,OE,E(,0)【点睛】本题考查了二次函数与几何的综合,涉及了待定系数法求二次函数解析式、矩形的性质、相似三角形的判定和性质、旋转变换的性质,灵活的利用待定系数法求二次函数解析式是解前两问的关键,熟练掌握相似三角形的判定与性质是解(3)的关键.20、x+1,2 【解析】先将括号内的分式通分,再将乘方转化为乘法,约分,最后代入数值求解即可.【详解】原式=(x2)()=(x2)=(x2)=x+1,当x=1时,原式=1+1=2【点睛】本题考查了整式的混合运算-化简求值,解题的关键是熟练的掌握
24、整式的混合运算法则.21、x1=-,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+13)=0,推出方程2x+1=0,2x+13=0,求出方程的解即可试题解析:解:整理得:(2x+1)23(2x+1)=0,分解因式得:(2x+1)(2x+13)=0,即2x+1=0,2x+13=0,解得:x1=,x2=1点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大22、解:(1);(2)存在,P(,);(1)Q点坐标为(0,-)或(0,)或(0,1)或(0,1).【解析】(1)已知点A坐标可确定直线AB的解析式,进一步
25、能求出点B的坐标点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C的坐标,在POB和POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:POC=POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=-x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.(1)分别以A、B、Q为直角顶点,分类进行讨论,找出相关的相似三角形,依据对应线段成比例进行求解即可.【详解】解:(1)把A(1,4)代入yk
26、x6,得k2,y2x6,令y0,解得:x1,B的坐标是(1,0)A为顶点,设抛物线的解析为ya(x1)24,把B(1,0)代入得:4a40,解得a1,y(x1)24x22x1 (2)存在OBOC1,OPOP,当POBPOC时,POBPOC,此时PO平分第二象限,即PO的解析式为yx设P(m,m),则mm22m1,解得m(m0,舍),P(,) (1)如图,当Q1AB90时,DAQ1DOB,即=,DQ1,OQ1,即Q1(0,-);如图,当Q2BA90时,BOQ2DOB,即,OQ2,即Q2(0,);如图,当AQ1B90时,作AEy轴于E,则BOQ1Q1EA,即OQ124OQ1+10,OQ11或1,即
27、Q1(0,1),Q4(0,1)综上,Q点坐标为(0,-)或(0,)或(0,1)或(0,1)23、(1)证明见解析(2) 【解析】(1)由点G是AE的中点,根据垂径定理可知ODAE,由等腰三角形的性质可得CBF=DFG,D=OBD,从而OBD+CBF=90,从而可证结论;(2)连接AD,解RtOAG可求出OG=3,AG=4,进而可求出DG的长,再证明DAGFDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长.【详解】(1)点G是AE的中点,ODAE,FC=BC,CBF=CFB,CFB=DFG,CBF=DFGOB=OD,D=OBD,D+DFG=90,OBD+CBF=90即ABC=9
28、0OB是O的半径,BC是O的切线;(2)连接AD,OA=5,tanA=,OG=3,AG=4,DG=ODOG=2,AB是O的直径,ADF=90,DAG+ADG=90,ADG+FDG=90DAG=FDG,DAGFDG,DG2=AGFG,4=4FG,FG=1由勾股定理可知:FD=.【点睛】本题考查了垂径定理,等腰三角形的性质,切线的判定,解直角三角形,相似三角形的判定与性质,勾股定理等知识,求出CBF=DFG,D=OBD是解(1)的关键,证明证明DAGFDG是解(2)的关键.24、(1)2;(2)75【解析】(1)直接利用绝对值的性质以及负指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利
29、用特殊角的三角函数值计算得出答案【详解】解:(1)原式1+1+11,1+1+112;(2)为三角形一内角,0180,15(15)165,2tan(15),1560,75【点睛】此题主要考查了实数运算,正确化简各数是解题关键25、1【解析】本题涉及绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方5个考点,先针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可【详解】解:原式2+23+11【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方等考点的运算26、(1)见解析;(2)EF
30、.【解析】(1)由旋转的性质可求FAEDAE45,即可证AEFAED,可得EFED;(2)由旋转的性质可证FBE90,利用勾股定理和方程的思想可求EF的长【详解】(1)BAC90,EAD45,BAE+DAC45,将ADC绕点A顺时针旋转90,得到AFB,BAFDAC,AFAD,CDBF,ABFACD45,BAF+BAE45FAE,FAEDAE,ADAF,AEAE,AEFAED(SAS),DEEF(2)ABAC2,BAC90,BC4,CD1,BF1,BD3,即BE+DE3,ABFABC45,EBF90,BF2+BE2EF2,1+(3EF)2EF2,EF【点睛】本题考查了旋转的性质,等腰直角三角形
31、的性质,全等三角形的判定和性质,勾股定理等知识,利用方程的思想解决问题是本题的关键27、(1)作图见解析;(2)证明见解析;【解析】(1)以C为圆心,任意长为半径画弧,交CB、CA于E、F;以A为圆心,CE长为半径画弧,交AB于G;以G为圆心,EF长为半径画弧,两弧交于H;连接AH并延长交BC于D,则BAD=C;(2)证明ABDCBA,然后根据相似三角形的性质得到结论【详解】(1)如图,BAD为所作;(2)BAD=C,B=BABDCBA,AB:BC=BD:AB,AB2=BDBC【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线)也考查了相似三角形的判定与性质