《山东省济宁市曲阜一中重点中学2022-2023学年中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省济宁市曲阜一中重点中学2022-2023学年中考试题猜想数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )ABCD2已知二次函数(为常数),当时,函数的最小值为5,则的值为()A1或5B1或3C1或5D1或33如图是本地区一种产品30天的销售图象,图是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润日销售量一件产品的销售利润,下列结论错误的是()A第24天的销售量为200件B第10天销售一件产品的利润是15元C第12天与第30天这两天的日销售利润相等D第27天的日销售利润是875元4矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(
3、5,1),则点D的坐标为( )A(5,5)B(5,4)C(6,4)D(6,5)5如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A该班总人数为50B步行人数为30C乘车人数是骑车人数的2.5倍D骑车人数占20%6如图,若数轴上的点A,B分别与实数1,1对应,用圆规在数轴上画点C,则与点C对应的实数是()A2B3C4D57如图,在正方形ABCD中,点E,F分别在BC,CD上,AEAF,AC与EF相交于点G,下列结论:AC垂直平分EF;BE+DFEF;当DAF15时,AEF为等边三角形;当EAF60时,SABESCEF,其中正确的是(
4、)ABCD8如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OAOB,则k的值为()A2B4C4D29如图,将ABC 绕点C顺时针旋转,使点B落在AB边上点B处,此时,点A的对应点 A恰好落在 BC 边的延长线上,下列结论错误的是( )ABCB=ACABACB=2BCBCA=BACDBC 平分BBA10某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B从一副扑克牌中任意抽取一张,这张牌是“红色的”C掷一枚质
5、地均匀的硬币,落地时结果是“正面朝上”D掷一个质地均匀的正六面体骰子,落地时面朝上的点数是611如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则DEF的面积与BAF的面积之比为( )A3:4B9:16C9:1D3:112若函数与y=2x4的图象的交点坐标为(a,b),则的值是()A4B2C1D2二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把EBF沿EF折叠,点B落在B处,若CDB恰为等腰三角形,则DB的长为 .14已知一个多边形的每一个内
6、角都等于108,则这个多边形的边数是 15如图,直线 ab,直线 c 分别于 a,b 相交,1=50,2=130,则3 的度数为( )A50B80C100D13016比较大小: (填“”,“h时,y随x的增大而增大;当xh时,y随x的增大而减小;根据1x3时,函数的最小值为5可分如下两种情况:若h3,可得当x=3时,y取得最小值5,分别列出关于h的方程求解即可【详解】解:xh时,y随x的增大而增大,当xh时,y随x的增大而减小,若h3,当时,y随x的增大而减小,当x=3时,y取得最小值5,可得:,解得:h=5或h=1(舍),h=5,若1h3时,当x=h时,y取得最小值为1,不是5,此种情况不符
7、合题意,舍去综上所述,h的值为1或5,故选:A【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键3、C【解析】试题解析:A、根据图可得第24天的销售量为200件,故正确;B、设当0t20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,z=-x+25,当x=10时,y=-10+25=15,故正确;C、当0t24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,y=t+100,当t=12时,y=15
8、0,z=-12+25=13,第12天的日销售利润为;15013=1950(元),第30天的日销售利润为;1505=750(元),7501950,故C错误;D、第30天的日销售利润为;1505=750(元),故正确故选C4、B【解析】由矩形的性质可得ABCD,AB=CD,AD=BC,ADBC,即可求点D坐标【详解】解:四边形ABCD是矩形ABCD,AB=CD,AD=BC,ADBC,A(1,4)、B(1,1)、C(5,1),ABCDy轴,ADBCx轴点D坐标为(5,4)故选B【点睛】本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.5、B【解析】根据乘车人数是25人,而乘车人数所占的比
9、例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例【详解】A、总人数是:2550%=50(人),故A正确;B、步行的人数是:5030%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确由于该题选择错误的,故选B【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题6、B【解析】由数轴上的点A、B 分别与实数1,1对应,即可求得AB=2,再根据半径相等得到BC=2,由
10、此即求得点C对应的实数【详解】数轴上的点 A,B 分别与实数1,1 对应,AB=|1(1)|=2,BC=AB=2,与点 C 对应的实数是:1+2=3. 故选B【点睛】本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键7、C【解析】通过条件可以得出ABEADF,从而得出BAE=DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设BC=a,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;当DAF=15时,可计算出EAF=60,即可判断EAF为等边三角形,当EAF=60时,设EC=x,B
11、E=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出SCEF和SABE,再通过比较大小就可以得出结论【详解】四边形ABCD是正方形,ABAD,B=D=90在RtABE和RtADF中,RtABERtADF(HL),BE=DFBC=CD,BC-BE=CD-DF,即CE=CF,AE=AF,AC垂直平分EF(故正确)设BC=a,CE=y,BE+DF=2(a-y)EF=y,BE+DF与EF关系不确定,只有当y=(2)a时成立,(故错误)当DAF=15时,RtABERtADF,DAF=BAE=15,EAF=90-215=60,又AE=AFAEF为等边三角形(故正确)当
12、EAF=60时,设EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2(x)2x2=2y(x+y)SCEF=x2,SABE=y(x+y),SABE=SCEF(故正确)综上所述,正确的有,故选C【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键8、C【解析】试题分析:作ACx轴于点C,作BDx轴于点D则BDO=ACO=90,则BOD+OBD=90,OAOB,BOD+AOC=90,BOD=AOC,OBDAOC,=(tanA)2=2,又SAOC=2=1,SOBD=2,k=-
13、1故选C考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征9、C【解析】根据旋转的性质求解即可【详解】解:根据旋转的性质,A:与均为旋转角,故=,故A正确;B:,又,故B正确;D:,BC平分BBA,故D正确.无法得出C中结论,故答案:C.【点睛】本题主要考查三角形旋转后具有的性质,注意灵活运用各条件10、D【解析】根据统计图可知,试验结果在0.16附近波动,即其概率P0.16,计算四个选项的概率,约为0.16者即为正确答案【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为0.670.1
14、6,故A选项不符合题意, 从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为0.480.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.50.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是0.16,故D选项符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比熟练掌握概率公式是解题关键.11、B【解析】可证明DFEBFA,根据相似三角形的面积之比等于相似比的平方即可得出答案【详解】四边形ABCD为平行四边形,DCAB,DFEBFA,DE:E
15、C=3:1,DE:DC=3:4,DE:AB=3:4,SDFE:SBFA=9:1故选B12、B【解析】求出两函数组成的方程组的解,即可得出a、b的值,再代入求值即可【详解】解方程组,把代入得:=2x4,整理得:x2+2x+1=0,解得:x=1,y=2,交点坐标是(1,2),a=1,b=2,=11=2,故选B【点睛】本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a、b的值二、填空题:(本大题共6个小题,每小题4分,共24分)13、36或4.【解析】(3)当BD=BC时,过B点作GHAD,则BGE=90,当BC=BD时,AG=DH=DC=8,由AE=3,AB=36,得BE=3
16、由翻折的性质,得BE=BE=3,EG=AGAE=83=5,BG=33,BH=GHBG=3633=4,DB=;(3)当DB=CD时,则DB=36(易知点F在BC上且不与点C、B重合);(3)当CB=CD时,EB=EB,CB=CB,点E、C在BB的垂直平分线上,EC垂直平分BB,由折叠可知点F与点C重合,不符合题意,舍去综上所述,DB的长为36或故答案为36或考点:3翻折变换(折叠问题);3分类讨论14、1【解析】试题分析:多边形的每一个内角都等于108,每一个外角为72多边形的外角和为360,这个多边形的边数是:36072=115、B【解析】根据平行线的性质即可解决问题【详解】ab,1+3=2,
17、1=50,2=130,3=80, 故选B【点睛】考查平行线的性质,解题的关键是熟练掌握平行线的性质,属于中考基础题16、【解析】试题分析:根据二次根式的性质可知,被开方数越大,所对应的二次根式就越大,因此可判断与=1的大小为1考点:二次根式的大小比较17、0【解析】根据题意列出方程组,求出方程组的解即可得到结果【详解】解:根据题意得:,即,解得:,则x+y1+10,故答案为0【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键18、36.【解析】试题分析:AFE和ADE关于AE对称,AFED90,AFAD,EFDE.tanEFC,可设EC3x,CF4x,那么EF5x,DEEF5x
18、.DCDECE3x5x8x.ABDC8x.EFCAFB90, BAFAFB90,EFCBAF.tanBAFtanEFC,.AB8x,BF6x.BCBFCF10x.AD10x.在RtADE中,由勾股定理,得AD2DE2AE2.(10x)2(5x)2(5)2.解得x1.AB8x8,AD10x10.矩形ABCD的周长8210236.考点:折叠的性质;矩形的性质;锐角三角函数;勾股定理.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、【解析】过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,由后坡度AB与前坡度AC相等知BAD=CAE=30,
19、从而得出BD=2、CE=3,据此可得【详解】解:过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,房子后坡度AB与前坡度AC相等,BAD=CAE,BAC=120,BAD=CAE=30,在直角ABD中,AB=4米,BD=2米,在直角ACE中,AC=6米,CE=3米,a-b=1米【点睛】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念20、今年的总收入为220万元,总支出为1万元【解析】试题分析:设去年总收入为x万元,总支出为y万元,根据利润=收入-支出即可得出关于x、y的二元一次方程组,解之即可得出结论试题解析:设去年
20、的总收入为x万元,总支出为y万元根据题意,得,解这个方程组,得,(1+10%)x=220,(1-20%)y=1答:今年的总收入为220万元,总支出为1万元21、(1)证明见解析;(2)CE=1【解析】(1)根据等角对等边得OBE=OEB,由角平分线的定义可得OBE=EBC,从而可得OEB=EBC,根据内错角相等,两直线平行可得OEBC,根据两直线平行,同位角相等可得OEA=90,从而可证AC是O的切线.(2)根据垂径定理可求BH=BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在RtOBH中,利用勾股定理可求出OH的长,从而求出CE的长.【详
21、解】(1)证明:如图,连接OE,OB=OE,OBE=OEB, BE平分ABCOBE=EBC,OEB=EBC,OEBC, ACB=90 ,OEA=ACB=90, AC是O的切线 .(2)解:过O作OHBF,BH=BF=3,四边形OHCE是矩形,CE=OH,在RtOBH中,BH=3,OB=5,OH=1,CE=1.【点睛】本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性22、(1)CBD与CEB相等,证明见解析;(2)证明见解析;(3)tanCDF= 【解析】试题分析:(1)由AB是O的直径,BC切O于点B,可得ADB=ABC=90
22、,由此可得A+ABD=ABD+CBD=90,从而可得A=CBD,结合A=CEB即可得到CBD=CEB;(2)由C=C,CEB=CBD,可得EBC=BDC,从而可得EBCBDC,再由相似三角形的性质即可得到结论;(3)设AB=2x,结合BC=AB,AB是直径,可得BC=3x,OB=OD=x,再结合ABC=90,可得OC=x,CD=(-1)x;由AO=DO,可得CDF=A=DBF,从而可得DCFBCD,由此可得:=,这样即可得到tanCDF=tanDBF=.试题解析:(1)CBD与CEB相等,理由如下:BC切O于点B,CBD=BAD,BAD=CEB,CEB=CBD,(2)C=C,CEB=CBD,E
23、BC=BDC,EBCBDC,;(3)设AB=2x,BC=AB,AB是直径,BC=3x,OB=OD=x,ABC=90,OC=x,CD=(-1)x,AO=DO,CDF=A=DBF,DCFBCD,=,tanDBF=,tanCDF=点睛:解答本题第3问的要点是:(1)通过证CDF=A=DBF,把求tanCDF转化为求tanDBF=;(2)通过证DCFBCD,得到.23、 (1)见解析;(2)【解析】分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OPAD,AE=DE,则1+OPA=90,而OAP=OPA,所以1+OAP=90,再根据菱形的性质得1=2,所以
24、2+OAP=90,然后根据切线的判定定理得到直线AB与O相切; (2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tanDAC=,得到DF=2,根据勾股定理得到AD=2,求得AE=,设O的半径为R,则OE=R,OA=R,根据勾股定理列方程即可得到结论详解:(1)连结OP、OA,OP交AD于E,如图, PA=PD,弧AP=弧DP,OPAD,AE=DE,1+OPA=90 OP=OA,OAP=OPA,1+OAP=90 四边形ABCD为菱形,1=2,2+OAP=90,OAAB,直线AB与O相切; (2)连结BD,交AC于点F,如图, 四边形ABCD为菱形,DB与AC互相
25、垂直平分 AC=8,tanBAC=,AF=4,tanDAC=,DF=2,AD=2,AE=在RtPAE中,tan1=,PE=设O的半径为R,则OE=R,OA=R在RtOAE中,OA2=OE2+AE2,R2=(R)2+()2,R=,即O的半径为 点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线也考查了菱形的性质和锐角三角函数以及勾股定理24、,63【解析】原式=,当a=,b=2时,原式25、(1)()或(1,1);(1)2a17b的最小值是【解析】(1)把x=y=m,a=1,b=1代入函数解析式,列出方程,通过解方程求得m的值即可;(1)抛物线上恒有两个不同的“和谐点
26、”A、B则关于m的方程m=am1+(3b+1)m+b-3的根的判别式=9b1-4ab+11a令y=9b1-4ab+11a,对于任意实数b,均有y2,所以根据二次函数y=9b1-4ab+11的图象性质解答;利用二次函数图象的对称性质解答即可【详解】(1)当a1,b1时,m1m1+4m+14,解得m或m1所以点P的坐标是(,)或(1,1);(1)mam1+(3b+1)m+b3,9b14ab+11a令y9b14ab+11a,对于任意实数b,均有y2,也就是说抛物线y9b14ab+11的图象都在b轴(横轴)上方(4a)14911a22a17由“和谐点”定义可设A(x1,y1),B(x1,y1),则x1
27、,x1是ax1+(3b+1)x+b32的两不等实根,线段AB的中点坐标是:(,)代入对称轴yx(+1),得(+1),3b+1+aa2,2,a1为定值,3b+1+a11,bb的最小值是【点睛】此题考查了二次函数综合题,其中涉及到了二次函数图象上点的坐标特征,抛物线与x轴的交点,一元二次方程与二次函数解析式间的关系,二次函数图象的性质等知识点,难度较大,解题时,掌握“和谐点”的定义是解题的难点26、(1)50,360;(2) 【解析】试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;(2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为共8种考点:1、扇形统计图,2、条形统计图,3、概率27、甲、乙获胜的机会不相同.【解析】试题分析:先画出树状图列举出所有情况,再分别算出甲、乙获胜的概率,比较即可判断.甲、乙获胜的机会不相同.考点:可能性大小的判断点评:本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.