《辽宁省大连协作校2023届中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省大连协作校2023届中考数学押题试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1下列四个多项式,能因式分解的是()Aa1Ba21Cx24yDx26x92反比例函数是y=的图象在()A第一、二象限B第一、三象限C第二、三象限D第二、四象限3某公司有11名员工,他们所在部门及相应每人所创年利润如下表所示,已知这11个数
2、据的中位数为1部门人数每人所创年利润(单位:万元)11938743这11名员工每人所创年利润的众数、平均数分别是A10,1B7,8C1,6.1D1,64如图是婴儿车的平面示意图,其中ABCD,1=120,3=40,那么2的度数为( )A80B90C100D1025四根长度分别为3,4,6,(为正整数)的木棒,从中任取三根首尾顺次相接都能组成一个三角形,则( )A组成的三角形中周长最小为9B组成的三角形中周长最小为10C组成的三角形中周长最大为19D组成的三角形中周长最大为166如图,是反比例函数图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内不包括边界的整数点个数是k,则抛物线向上
3、平移k个单位后形成的图象是ABCD7某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是( )ABCD8如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是()ABCD9计算的结果为()ABCD10分式有意义,则x的取值范围是()Ax2Bx0Cx2Dx7二、填空题(本大题共6个小题,每小题3分,共18分)11不等式5x33x+5的非负整数解是_12已知,则_13如图,菱形OABC的顶点O是原点,顶点B
4、在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为 14如图,点A的坐标为(3,),点B的坐标为(6,0),将AOB绕点B按顺时针方向旋转一定的角度后得到AOB,点A的对应点A在x轴上,则点O的坐标为_15已知圆锥的高为3,底面圆的直径为8,则圆锥的侧面积为_16化简: _.三、解答题(共8题,共72分)17(8分)如图,现有一块钢板余料,它是矩形缺了一角,.王师傅准备从这块余料中裁出一个矩形(为线段上一动点).设,矩形的面积为.(1)求与之间的函数关系式,并注明的取值范围;(2)为何值时,取最大值?最大值是多少?18(8分)为了提高服务质量,某宾馆决定对甲、乙两
5、种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?19(8分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将EBF沿EF折叠,得到EBF(1)如图1,连接AB若AEB为等边三角形,则BEF等于多少度在运动过程中,线段AB与EF有何位
6、置关系?请证明你的结论(2)如图2,连接CB,求CBF周长的最小值(3)如图3,连接并延长BB,交AC于点P,当BB6时,求PB的长度20(8分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高21(8分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和记录后将小球放回袋中搅匀,进行重复试验,试验数据如
7、下表:摸球总次数1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是_;如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?22(10分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司
8、每天的施工费少1500元甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?23(12分)如图,在ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。求证:D是BC的中点;如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。24如图,在ABC中,ABC=90,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE(1)求证:四边形BCFE是平行四边形;(2)当ACB=60时,求证:四边形BCFE是菱形参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】试题分析:利用平
9、方差公式及完全平方公式的结构特征判断即可试题解析:x2-6x+9=(x-3)2故选D考点:2因式分解-运用公式法;2因式分解-提公因式法2、B【解析】解:反比例函数是y=中,k=20,此函数图象的两个分支分别位于一、三象限故选B3、D【解析】根据中位数的定义即可求出x的值,然后根据众数的定义和平均数公式计算即可【详解】解:这11个数据的中位数是第8个数据,且中位数为1,则这11个数据为3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,所以这组数据的众数为1万元,平均数为万元故选:【点睛】此题考查的是中位数、众数和平均数,掌握中位数的定义、众数的定义和平均数公式是解决此题的关键4、A
10、【解析】分析:根据平行线性质求出A,根据三角形内角和定理得出2=1801A,代入求出即可详解:ABCD.A=3=40,1=60,2=1801A=80,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180.5、D【解析】首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析【详解】解:其中的任意三根的组合有3、4、1;3、4、x;3、1、x;4、1、x共四种情况,由题意:从中任取三根,首尾顺次相接都能组成一个三角形,可得3x7,即x=4或5或1当三边为3、4、1时,其周长为3+4+1=13
11、;当x=4时,周长最小为3+4+4=11,周长最大为4+1+4=14;当x=5时,周长最小为3+4+5=12,周长最大为4+1+5=15;若x=1时,周长最小为3+4+1=13,周长最大为4+1+1=11;综上所述,三角形周长最小为11,最大为11,故选:D【点睛】本题考查的是三角形三边关系,利用了分类讨论的思想掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答本题的关键6、A【解析】依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线向上平移5个单位后形成的图象【详解】解:如图,反比例函数图象与坐标轴围成的区域内不包括边界的整数点个数是5个,即,抛物线向上平移5个
12、单位后可得:,即,形成的图象是A选项故选A【点睛】本题考查反比例函数图象上点的坐标特征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k的值,利用二次函数图象的平移规律进行解答7、C【解析】本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时实际用时1【详解】解:原计划用时为:,实际用时为:所列方程为:,故选C【点睛】本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键8、D【解析】由正方体表面展开图的形状可知,此正方体还缺一个上盖,故应在图中四块相连的空白正方形中选一块,再根据概率公式解答即可【详解】因为共有12个大小相同
13、的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,所以剩下7个小正方形在其余的7个小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的小正方形有4个,因此先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是故选D【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比,掌握概率公式是本题的关键9、A【解析】根据分式的运算法则即可【详解】解:原式=,故选A.【点睛】本题主要考查分式的运算。10、A【解析】直接利用分式有意义则分母不为零进而得出答案【详解】解:分式有意义,则x10,解得:x1故选:A【点睛】此题主要考查了分式有意义
14、的条件,正确把握分式的定义是解题关键当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.二、填空题(本大题共6个小题,每小题3分,共18分)11、0,1,2,1【解析】5x11x+5,移项得,5x1x5+1,合并同类项得,2x8,系数化为1得,x4所以不等式的非负整数解为0,1,2,1;故答案为0,1,2,1【点睛】根据不等式的基本性质正确解不等式,求出解集是解答本题的关键 12、3【解析】依据可设a=3k,b=2k,代入化简即可【详解】,可设a=3k,b=2k,=3故答案为3.【点睛】本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比
15、例的项两端的两项叫做比例的外项,中间的两项叫做比例的内项13、6【解析】分析:菱形的两条对角线的长分别是6和4,A(3,2).点A在反比例函数的图象上,解得k=6.【详解】请在此输入详解!14、(,)【解析】作ACOB、ODAB,由点A、B坐标得出OC=3、AC=、BC=OC=3,从而知tanABC=,由旋转性质知BO=BO=6,tanABO=tanABO=,设OD=x、BD=3x,由勾股定理求得x的值,即可知BD、OD的长即可.【详解】如图,过点A作ACOB于C,过点O作ODAB于D,A(3, ),OC=3,AC=,OB=6,BC=OC=3,则tanABC=,由旋转可知,BO=BO=6,AB
16、O=ABO,=,设OD=x,BD=3x,由OD2+BD2=OB2可得(x)2+(3x)2=62,解得:x=或x= (舍),则BD=3x=,OD=x=,OD=OB+BD=6+=,点O的坐标为(,).【点睛】本题考查的是图形的旋转,熟练掌握勾股定理和三角函数是解题的关键.15、20【解析】利用勾股定理可求得圆锥的母线长,然后根据圆锥的侧面积公式进行计算即可.【详解】底面直径为8,底面半径=4,底面周长=8,由勾股定理得,母线长=5,故圆锥的侧面积=85=20,故答案为:20【点睛】本题主要考查了圆锥的侧面积的计算方法解题的关键是熟记圆锥的侧面展开扇形的面积计算方法16、a+b【解析】将原式通分相减
17、,然后用平方差公式分解因式,再约分化简即可。【详解】解:原式=a+b【点睛】此题主要考查了分式的混合运算,熟练掌握运算法则是解本题的关键三、解答题(共8题,共72分)17、(1);(1)时,取最大值,为.【解析】(1)分别延长DE,FP,与BC的延长线相交于G,H,由AF=x知CH=x-4,根据,即 可得z=,利用矩形的面积公式即可得出解析式;(1)将(1)中所得解析式配方成顶点式,利用二次函数的性质解答可得【详解】解:(1)分别延长DE,FP,与BC的延长线相交于G,H,AF=x,CH=x-4,设AQ=z,PH=BQ=6-z,PHEG,即,化简得z=,y=x=-x1+x (4x10);(1)
18、y=-x1+x=-(x-)1+,当x=dm时,y取最大值,最大值是dm1【点睛】本题考查了二次函数的应用,解题的关键是根据相似三角形的性质得出矩形另一边AQ的长及二次函数的性质18、(1)甲、乙两种套房每套提升费用为25、1万元;(2)甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元【解析】(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论.【详解】(1)设乙种套房提升费用为x万元,则甲种套
19、房提升费用为(x3)万元,则,解得x=1经检验:x=1是分式方程的解,答:甲、乙两种套房每套提升费用为25、1万元;(2)设甲种套房提升a套,则乙种套房提升(80a)套,则209025a+1(80a)2096,解得48a2共3种方案,分别为:方案一:甲种套房提升48套,乙种套房提升32套方案二:甲种套房提升49套,乙种套房提升31套,方案三:甲种套房提升2套,乙种套房提升30套设提升两种套房所需要的费用为y万元,则y=25a+1(80a)=3a+2240,k=3,当a取最大值2时,即方案三:甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元【点睛】本题考查了一次函数的性质的运用,列
20、分式方程解实际问题的运用,列一元一次不等式组解实际问题的运用解答时建立方程求出甲,乙两种套房每套提升费用是关键,是解答第二问的必要过程19、(1)BEF60;A BEF,证明见解析;(2)CBF周长的最小值5+5;(3)PB【解析】(1)当AEB为等边三角形时,AE B60,由折叠可得,BEF BE B 12060;依据AEBE,可得EA BE BA,再根据BEFBEF,即可得到BEFBA B,进而得出EFA B;(2)由折叠可得,CF+ BFCF+BFBC10,依据BE+ BCCE,可得BCCEBE55,进而得到BC最小值为55,故CBF周长的最小值10+555+5;(3)将ABB和APB分
21、别沿AB、AC翻折到ABM和APN处,延长MB、NP相交于点Q,由MAN2BAC90,MN90,AMAN,可得四边形AMQN为正方形,设PBPNx,则BP6+x,BQ862,QP8x依据BQP90,可得方程22+(8x)2(6+x)2,即可得出PB的长度【详解】(1)当AE B为等边三角形时,AE B60,由折叠可得,BEFBE B12060,故答案为60;A BEF,证明:点E是AB的中点,AEBE,由折叠可得BEBE,AEBE,EA BE BA,又BEFBEF,BEFBA B,EFA B;(2)如图,点B的轨迹为半圆,由折叠可得,BFBF,CF+ BFCF+BFBC10,BE+ BCCE,
22、BCCEBE55,BC最小值为55,CBF周长的最小值10+555+5;(3)如图,连接A B,易得A BB90,将AB B和AP B分别沿AB、AC翻折到ABM和APN处,延长MB、NP相交于点Q,由MAN2BAC90,MN90,AMAN,可得四边形AMQN为正方形,由AB10,B B6,可得A B8,QMQNA B8,设P BPNx,则BP6+x,BQ862,QP8xBQP90,22+(8x)2(6+x)2,解得:x,P Bx【点睛】本题属于四边形综合题,主要考查了折叠的性质,等边三角形的性质,正方形的判定与性质以及勾股定理的综合运用,解题的关键是设要求的线段长为x,然后根据折叠和轴对称的
23、性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案20、树高为 5.5 米【解析】根据两角相等的两个三角形相似,可得 DEFDCB ,利用相似三角形的对边成比例,可得, 代入数据计算即得BC的长,由 ABAC+BC ,即可求出树高.【详解】DEFDCB90,DD, DEFDCB ,DE0.4m,EF0.2m,CD8m, CB4(m),ABAC+BC1.5+45.5(米)答:树高为 5.5 米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型21、(1)出现“和为8”的概率是0.33;(2)x的值不能为7.【解析】(1)利用
24、频率估计概率结合表格中数据得出答案即可;(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与进行比较,即可得出答案.【详解】解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,故出现“和为8”的概率是0.33.(2)x的值不能为7.理由:假设x7,则P(和为9),所以x的值不能为7.【点睛】此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.22、解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天根据题意,得,解得x=1经检验,x=1是方程的解且符合题意1.5 x=2甲,乙两公司单独完成此项工程,各需1天,2天(
25、2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y1500)元,根据题意得12(y+y1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:15000=100000(元);乙公司单独完成此项工程所需的施工费:2(50001500)=105000(元);让一个公司单独完成这项工程,甲公司的施工费较少【解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可(2)分别求得两个公司施工所需费用后比较即可得到结论23、(1)详见解析;(2)详见解析【解析】(1)根据两直线平行,内错角相等求出AFE=DCE,然后利用“
26、角角边”证明AEF和DEC全等,再根据全等三角形的性质和等量关系即可求解;(2)由(1)知AF平行等于BD,易证四边形AFBD是平行四边形,而AB=AC,AD是中线,利用等腰三角形三线合一定理,可证ADBC,即ADB=90,那么可证四边形AFBD是矩形【详解】(1)证明:AFBC,AFE=DCE,点E为AD的中点,AE=DE,在AEF和DEC中,AEFDEC(AAS),AF=CD,AF=BD,CD=BD,D是BC的中点;(2)若AB=AC,则四边形AFBD是矩形理由如下:AEFDEC,AF=CD,AF=BD,CD=BD;AFBD,AF=BD,四边形AFBD是平行四边形,AB=AC,BD=CD,
27、ADB=90,平行四边形AFBD是矩形【点睛】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键24、(1)见解析;(2)见解析【解析】(1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行四边形(2)根据菱形的判定证明即可【详解】(1)证明:DE为AB,AC中点DE为ABC的中位线,DE=BC,DEBC,即EFBC,EF=BC,四边形BCEF为平行四边形(2)四边形BCEF为平行四边形,ACB=60,BC=CE=BE,四边形BCFE是菱形【点睛】本题考查平行四边形的判定和性质、菱形的判定、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型