《辽宁省营口市2023届中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省营口市2023届中考数学押题试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取值范围是()A且BC且D2若点都是反比例函数的图象上的点,并且,则下列各式中正确的是( )ABCD3下列各点中,在二次函数的图象上的是( )ABCD4下列运算正确的是
2、( )Aa2a4=a8B2a2+a2=3a4Ca6a2=a3D(ab2)3=a3b65如图,是反比例函数图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内不包括边界的整数点个数是k,则抛物线向上平移k个单位后形成的图象是ABCD6如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( )ABCD7如图所示的几何体,它的左视图是( )ABCD8下列运算正确的是()ABCa2a3=a5D(2a)3=2a39有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()b0a; |b|a|; ab0; aba+bABCD10如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向
3、这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11圆锥的底面半径为6,母线长为10,则圆锥的侧面积为_cm212已知一个多边形的每一个外角都等于,则这个多边形的边数是 13计算:=_14抛物线y=(x+1)2 - 2的顶点坐标是 _ 15如图,AB是O的直径,BD,CD分别是过O上点B,C的切线,且BDC110连接AC,则A的度数是_16如图是一位同学设计的用手电筒来测量某古城墙高度的示意图点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知ABBD,CDBD,测得
4、AB2米,BP3米,PD15米,那么该古城墙的高度CD是_米三、解答题(共8题,共72分)17(8分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元152025y/件252015已知日销售量y是销售价x的一次函数求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?18(8分)如图,抛物线y=ax2+bx+c(a0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E(1)求抛物线的解析式;(2
5、)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标19(8分)如图,在正方形ABCD中,AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求EAF的度数如图,在RtABD中,BAD=90,AB=AD,点M,N是BD边上的任意两点,且MAN=45,将ABM绕点A逆时针旋转90至ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由在图中,若EG
6、=4,GF=6,求正方形ABCD的边长20(8分)如图,在平行四边形ABCD中,ABBC利用尺规作图,在AD边上确定点E,使点E到边AB,BC的距离相等(不写作法,保留作图痕迹);若BC=8,CD=5,则CE= 21(8分)如图所示,抛物线yx2+bx+c经过A、B两点,A、B两点的坐标分别为(1,0)、(0,3)求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DCDE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与DOC相似,请你直接写出所有满足条件的点P的坐标22(10分)如图,在平面直角坐标系中,将坐标
7、原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B,AB=求反比例函数的解析式;若P(,)、Q(,)是该反比例函数图象上的两点,且时,指出点P、Q各位于哪个象限?并简要说明理由23(12分)如图,在ABC中,点D、E分别在边AB、AC上,DEBC,且DE=BC如果AC=6,求AE的长;设,求向量(用向量、表示)24综合与实践折叠中的数学在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究问题背景:在矩形ABCD中,点E、F分别是BC、AD 上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C处,点D落在点D处,射线EC与
8、射线DA相交于点M猜想与证明:(1)如图1,当EC与线段AD交于点M时,判断MEF的形状并证明你的结论;操作与画图:(2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);操作与探究:(3)如图3,当点M在线段DA延长线上时,线段CD分别与AD,AB交于P,N两点时,CE与AB交于点Q,连接MN 并延长MN交EF于点O 求证:MOEF 且MO平分EF;(4)若AB=4,AD=4,在点E由点B运动到点C的过程中,点D所经过的路径的长为 参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据一元二次方程的系数
9、结合根的判别式1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围【详解】关于x的一元二次方程x22x(m1)=1有两个不相等的实数根,=(2)241(m1)=4m1,m1故选B【点睛】本题考查了根的判别式,牢记“当1时,方程有两个不相等的实数根”是解题的关键2、B【解析】解:根据题意可得:反比例函数处于二、四象限,则在每个象限内为增函数,且当x0时y0,当x0时,y0,.3、D【解析】将各选项的点逐一代入即可判断【详解】解:当x=1时,y=-1,故点不在二次函数的图象;当x=2时,y=-4,故点和点不在二次函数的图象;当x=-2时,y=-4,故点在二次函数的图象;故答案为:D【点
10、睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式4、D【解析】根据同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方运算法则逐一计算作出判断:A、a2a4=a6,故此选项错误;B、2a2+a2=3a2,故此选项错误;C、a6a2=a4,故此选项错误;D、(ab2)3=a3b6,故此选项正确故选D考点:同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方5、A【解析】依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线向上平移5个单位后形成的图象【详解】解:如图,反比例函数图象与坐标轴围成的区域内不包括边界的整数点个数是5个,即,
11、抛物线向上平移5个单位后可得:,即,形成的图象是A选项故选A【点睛】本题考查反比例函数图象上点的坐标特征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k的值,利用二次函数图象的平移规律进行解答6、A【解析】试题分析:观察图形可知,该几何体的主视图是故选A考点:简单组合体的三视图7、A【解析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线【详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:A【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键8、C【解析】根据算术平方根的定义、二次根式的加减运算
12、、同底数幂的乘法及积的乘方的运算法则逐一计算即可判断【详解】解:A、=2,此选项错误;B、不能进一步计算,此选项错误;C、a2a3=a5,此选项正确;D、(2a)3=8a3,此选项计算错误;故选:C【点睛】本题主要考查二次根式的加减和幂的运算,解题的关键是掌握算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则9、B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b0|a|,故错误,因为b0a,所以aba+b,所以正确.故选B.10、C【解析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢【详解】根据题意和图形的形状,可知水的最大深度
13、h与时间t之间的关系分为两段,先快后慢。故选:C.【点睛】此题考查函数的图象,解题关键在于观察图形二、填空题(本大题共6个小题,每小题3分,共18分)11、60【解析】圆锥的侧面积=底面半径母线长,把相应数值代入即可求解解:圆锥的侧面积=610=60cm112、5【解析】多边形的每个外角都等于72,多边形的外角和为360,36072=5,这个多边形的边数为5.故答案为5.13、-【解析】根据二次根式的运算法则即可求出答案【详解】原式=2.故答案为-.【点睛】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型14、 (-1,-2)【解析】试题分析:因为y=(x+
14、1)22是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,2),故答案为(1,2)考点:二次函数的性质15、4【解析】试题分析:连结BC,因为AB是O的直径,所以ACB90,A+ABC90,又因为BD,CD分别是过O上点B,C的切线,BDC440,所以CD=BD,所以BCDDBC4,又ABD90,所以A=DBC4考点:4圆周角定理;4切线的性质;4切线长定理16、10【解析】首先证明ABPCDP,可得=,再代入相应数据可得答案【详解】如图,由题意可得:APE=CPE,APB=CPD,ABBD,CDBD,ABP=CDP=90,ABPCDP,=,AB=2米,BP=3米,PD=15米,=,
15、解得:CD=10米.故答案为10.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.三、解答题(共8题,共72分)17、();()此时每天利润为元【解析】试题分析:(1) 根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.试题解析:()设,将,和,代入,得:,解得:,;()将代入()中函数表达式得:,利润(元),答:此时每天利润为元18、 (1)、y=+x+4;(2)、不存在,理由见解析.【解析】试题分析:(1)、首先设抛物线的解析式为一般式,将点C和点A意见对称轴代入求出函数解析式;(2)、本题利用假设法来进行
16、证明,假设存在这样的点,然后设出点F的坐标求出FH和FG的长度,然后得出面积与t的函数关系式,根据方程无解得出结论.试题解析:(1)、抛物线y=a+bx+c(a0)过点C(0,4) C=4=1 b=2a 抛物线过点A(2,0) 4a2b+c=0 由解得:a=,b=1,c=4 抛物线的解析式为:y=+x+4(2)、不存在 假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FHx轴于点H,FGy轴于点G. 设点F的坐标为(t,+t+4),其中0t4 则FH=+t+4 FG=tOBF的面积=OBFH=4(+t+4)=+2t+8 OFC的面积=OCFG=2t四边形ABFC的面积=AOC的
17、面积+OBF的面积+OFC的面积=+4t+12令+4t+12=17 即+4t5=0 =1620=40 方程无解不存在满足条件的点F考点:二次函数的应用19、 (1) 45(1) MN1=ND1+DH1理由见解析;(3)11.【解析】(1)先根据AGEF得出ABE和AGE是直角三角形,再根据HL定理得出ABEAGE,故可得出BAE=GAE,同理可得出GAF=DAF,由此可得出结论;(1)由旋转的性质得出BAM=DAH,再根据SAS定理得出AMNAHN,故可得出MN=HN再由BAD=90,AB=AD可知ABD=ADB=45,根据勾股定理即可得出结论;(3)设正方形ABCD的边长为x,则CE=x-4
18、,CF=x-2,再根据勾股定理即可得出x的值【详解】解:(1)在正方形ABCD中,B=D=90,AGEF,ABE和AGE是直角三角形在RtABE和RtAGE中,ABEAGE(HL),BAE=GAE同理,GAF=DAFEAF=EAG+FAG=BAD=45(1)MN1=ND1+DH1由旋转可知:BAM=DAH,BAM+DAN=45,HAN=DAH+DAN=45HAN=MAN在AMN与AHN中,AMNAHN(SAS),MN=HNBAD=90,AB=AD,ABD=ADB=45HDN=HDA+ADB=90NH1=ND1+DH1MN1=ND1+DH1(3)由(1)知,BE=EG=4,DF=FG=2设正方形
19、ABCD的边长为x,则CE=x-4,CF=x-2CE1+CF1=EF1,(x-4)1+(x-2)1=101解这个方程,得x1=11,x1=-1(不合题意,舍去)正方形ABCD的边长为11【点睛】本题考查的是几何变换综合题,涉及到三角形全等的判定与性质、勾股定理、正方形的性质等知识,难度适中20、(1)见解析;(2)1【解析】试题分析:根据角平分线上的点到角的两边距离相等知作出A的平分线即可;根据平行四边形的性质可知AB=CD=5,ADBC,再根据角平分线的性质和平行线的性质得到BAE=BEA,再根据等腰三角形的性质和线段的和差关系即可求解试题解析:(1)如图所示:E点即为所求(2)四边形ABC
20、D是平行四边形,AB=CD=5,ADBC,DAE=AEB,AE是A的平分线,DAE=BAE,BAE=BEA,BE=BA=5,CE=BCBE=1考点:作图复杂作图;平行四边形的性质21、(1)y=x22x3;(2)D(0,1);(3)P点坐标(,0)、(,2)、(3,8)、(3,10)【解析】(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EFy轴于点F,利用勾股定理表示出DC,DE的长再建立相等关系式求出m值,进而求出D点坐标;(3)先根据边角边证明CODDFE,得出CDE=90,即CDDE,然后
21、当以C、D、P为顶点的三角形与DOC相似时,根据对应边不同进行分类讨论:当OC与CD是对应边时,有比例式,能求出DP的值,又因为DE=DC,所以过点P作PGy轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;当OC与DP是对应边时,有比例式,易求出DP,仍过点P作PGy轴于点G,利用比例式求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标.【详解】解:(1)抛物线y=x2+bx+c经过A(1,0)、B(0,3),解得
22、,故抛物线的函数解析式为y=x22x3;(2)令x22x3=0,解得x1=1,x2=3,则点C的坐标为(3,0),y=x22x3=(x1)24,点E坐标为(1,4),设点D的坐标为(0,m),作EFy轴于点F(如下图),DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,DC=DE,m2+9=m2+8m+16+1,解得m=1,点D的坐标为(0,1);(3)点C(3,0),D(0,1),E(1,4),CO=DF=3,DO=EF=1,根据勾股定理,CD=,在COD和DFE中,CODDFE(SAS),EDF=DCO,又DCO+CDO=90,EDF+CDO=90,CDE=1
23、8090=90,CDDE,当OC与CD是对应边时,DOCPDC,即=,解得DP=,过点P作PGy轴于点G,则,即,解得DG=1,PG=,当点P在点D的左边时,OG=DGDO=11=0,所以点P(,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(,2);当OC与DP是对应边时,DOCCDP,即=,解得DP=3,过点P作PGy轴于点G,则,即,解得DG=9,PG=3,当点P在点D的左边时,OG=DGOD=91=8,所以,点P的坐标是(3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,10),综上所述,在直线DE上存在点P,使得以C、D、P
24、为顶点的三角形与DOC相似,满足条件的点P共有4个,其坐标分别为(,0)、(,2)、(3,8)、(3,10)考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.22、(1);(2)P在第二象限,Q在第三象限【解析】试题分析:(1)求出点B坐标即可解决问题;(2)结论:P在第二象限,Q在第三象限利用反比例函数的性质即可解决问题;试题解析:解:(1)由题意B(2,),把B(2,)代入中,得到k=3,反比例函数的解析式为(2)结论:P在第二象限,Q在第三象限理由:k=30,反比例函数y在每个象限y随x的增大而增大,P(x1,y1)、Q(x2,y2)是该反比例函数图象
25、上的两点,且x1x2时,y1y2,P、Q在不同的象限,P在第二象限,Q在第三象限点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型23、(1)1;(2).【解析】(1)由平行线截线段成比例求得AE的长度;(2)利用平面向量的三角形法则解答【详解】(1)如图,DEBC,且DE=BC,又AC=6,AE=1(2),又DEBC,DE=BC,【点睛】考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义24、(1)MEF是等腰三角形(2)见解析(3)证明见解析(4) 【解析】(1)由ADBC,可得MFECEF,由折叠可得,ME
26、FCEF,依据MFEMEF,即可得到MEMF,进而得出MEF是等腰三角形;(2)作AC的垂直平分线,即可得到折痕EF,依据轴对称的性质,即可得到D的位置;(3)依据BEQDFP,可得PFQE,依据NCPNAP,可得ANCN,依据RtMCNRtMAN,可得AMNCMN,进而得到MEF是等腰三角形,依据三线合一,即可得到MOEF 且MO平分EF;(4)依据点D所经过的路径是以O为圆心,4为半径,圆心角为240的扇形的弧,即可得到点D所经过的路径的长【详解】(1)MEF是等腰三角形理由:四边形ABCD是矩形,ADBC,MFE=CEF,由折叠可得,MEF=CEF,MFE=MEF,ME=MF,MEF是等
27、腰三角形(2)折痕EF和折叠后的图形如图所示:(3)如图,FD=BE,由折叠可得,DF=DF,BE=DF,在NCQ和NAP中,CNQ=ANP,NCQ=NAP=90,CQN=APN,CQN=BQE,APN=DPF,BQE=DPF,在BEQ和DFP中,BEQDFP(AAS),PF=QE,四边形ABCD是矩形,AD=BC,ADFD=BCBE,AF=CE,由折叠可得,CE=EC,AF=CE,AP=CQ,在NCQ和NAP中,NCPNAP(AAS),AN=CN,在RtMCN和RtMAN中,RtMCNRtMAN(HL),AMN=CMN,由折叠可得,CEF=CEF,四边形ABCD是矩形,ADBC,AFE=FEC,CEF=AFE,ME=MF,MEF是等腰三角形,MOEF 且MO平分EF;(4)在点E由点B运动到点C的过程中,点D所经过的路径是以O为圆心,4为半径,圆心角为240的扇形的弧,如图:故其长为L=故答案为【点睛】此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是解本题的关键