《辽宁省本溪高级中学2023届高三第二次调研数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省本溪高级中学2023届高三第二次调研数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知全集,集合,则( )ABCD2已知中内角所对应的边依次为,若,则的面积为( )ABCD3已知函数是上的减函数,当最小时
2、,若函数恰有两个零点,则实数的取值范围是( )ABCD4已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则( )APA,PB,PC两两垂直B三棱锥P-ABC的体积为CD三棱锥P-ABC的侧面积为5已知函数,则( )AB1C-1D06某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为( )ABCD7某装饰公司制作一种扇形板状装饰品,其圆心角为120,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小
3、大致需要的长度为( )A58厘米B63厘米C69厘米D76厘米8如图,正三棱柱各条棱的长度均相等,为的中点,分别是线段和线段的动点(含端点),且满足,当运动时,下列结论中不正确的是A在内总存在与平面平行的线段B平面平面C三棱锥的体积为定值D可能为直角三角形9设命题函数在上递增,命题在中,下列为真命题的是( )ABCD10若的展开式中含有常数项,且的最小值为,则( )ABCD11复数的虚部为( )ABC2D12一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13下图是一个算法流程图,则输出的的值为_14(5分
4、)国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是,则这五位同学答对题数的方差是_15函数的定义域为_.16已知关于x的不等式(axa24)(x4)0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知点、分别在轴、轴上运动,(1)求点的轨迹的方程;(2)过点且斜率存在的直线与曲线交于、两点
5、,求的取值范围18(12分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,求证:.19(12分)函数,且恒成立.(1)求实数的集合;(2)当时,判断图象与图象的交点个数,并证明.(参考数据:)20(12分)已知椭圆:()的左、右焦点分别为和,右顶点为,且,短轴长为.(1)求椭圆的方程;(2)若过点作垂直轴的直线,点为直线上纵坐标不为零的任意一点,过作的垂线交椭圆于点和,当时,求此时四边形的面积.21(12分)某企业现有AB两套设备生产某种产品,现从A,B两套设备生产的大量产品中各抽取了100件产品作为样本,检测某一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.
6、图1是从A设备抽取的样本频率分布直方图,表1是从B设备抽取的样本频数分布表.图1:A设备生产的样本频率分布直方图表1:B设备生产的样本频数分布表质量指标值频数2184814162(1)请估计AB设备生产的产品质量指标的平均值;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在内的定为一等品,每件利润240元;质量指标值落在或内的定为二等品,每件利润180元;其它的合格品定为三等品,每件利润120元.根据图1、表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.企业由于投入资金的限制,需要根据A,B两套设备生产的同一种
7、产品每件获得利润的期望值调整生产规模,请根据以上数据,从经济效益的角度考虑企业应该对哪一套设备加大生产规模?22(10分)已知在中,角、的对边分别为,.(1)若,求的值;(2)若,求的面积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】直接利用集合的基本运算求解即可【详解】解:全集,集合,则,故选:【点睛】本题考查集合的基本运算,属于基础题2、A【解析】由余弦定理可得,结合可得a,b,再利用面积公式计算即可.【详解】由余弦定理,得,由,解得,所以,.故选:A.【点睛】本题考查利用余弦定理解三角形,考查学生的基本计算能
8、力,是一道容易题.3、A【解析】首先根据为上的减函数,列出不等式组,求得,所以当最小时,之后将函数零点个数转化为函数图象与直线交点的个数问题,画出图形,数形结合得到结果.【详解】由于为上的减函数,则有,可得,所以当最小时,函数恰有两个零点等价于方程有两个实根,等价于函数与的图像有两个交点画出函数的简图如下,而函数恒过定点,数形结合可得的取值范围为故选:A.【点睛】该题考查的是有关函数的问题,涉及到的知识点有分段函数在定义域上单调减求参数的取值范围,根据函数零点个数求参数的取值范围,数形结合思想的应用,属于中档题目.4、C【解析】根据三视图,可得三棱锥P-ABC的直观图,然后再计算可得.【详解】
9、解:根据三视图,可得三棱锥P-ABC的直观图如图所示,其中D为AB的中点,底面ABC.所以三棱锥P-ABC的体积为,、不可能垂直,即不可能两两垂直,.三棱锥P-ABC的侧面积为.故正确的为C.故选:C.【点睛】本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.5、A【解析】由函数,求得,进而求得的值,得到答案.【详解】由题意函数,则,所以,故选A.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的解析式,代入求解是解答的关键,着重考查了推理与运算能力,属于基础题.6、A【解析】由题意得到该几何体是一个组合体,前半部分是一个高为底面是边长为4的等边三角形的
10、三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为 故答案为A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.7、B【解析】由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【详解】因为弧长比较短的情况下
11、分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,故导线长度约为63(厘米).故选:B.【点睛】本题主要考查了扇形弧长的计算,属于容易题.8、D【解析】A项用平行于平面ABC的平面与平面MDN相交,则交线与平面ABC平行;B项利用线面垂直的判定定理;C项三棱锥与三棱锥体积相等,三棱锥的底面积是定值,高也是定值,则体积是定值;D项用反证法说明三角形DMN不可能是直角三角形.【详解】A项,用平行于平面ABC的平面截平面MND,则交线平行于平面ABC,故正确; B项,如图:当M、N分别在BB1、CC1上运动时,若满足BM=CN,则线段MN必过正方形BCC1B1的中心O,由DO垂直于
12、平面BCC1B1可得平面平面,故正确;C项,当M、N分别在BB1、CC1上运动时,A1DM的面积不变,N到平面A1DM的距离不变,所以棱锥N-A1DM的体积不变,即三棱锥A1-DMN的体积为定值,故正确;D项,若DMN为直角三角形,则必是以MDN为直角的直角三角形,但MN的最大值为BC1,而此时DM,DN的长大于BB1,所以DMN不可能为直角三角形,故错误.故选D【点睛】本题考查了命题真假判断、棱柱的结构特征、空间想象力和思维能力,意在考查对线面、面面平行、垂直的判定和性质的应用,是中档题.9、C【解析】命题:函数在上单调递减,即可判断出真假命题:在中,利用余弦函数单调性判断出真假【详解】解:
13、命题:函数,所以,当时,即函数在上单调递减,因此是假命题命题:在中,在上单调递减,所以,是真命题则下列命题为真命题的是故选:C【点睛】本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题10、C【解析】展开式的通项为,因为展开式中含有常数项,所以,即为整数,故n的最小值为1所以.故选C点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.11、D【解析】根据复数的
14、除法运算,化简出,即可得出虚部.【详解】解:=,故虚部为-2.故选:D.【点睛】本题考查复数的除法运算和复数的概念.12、D【解析】首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及的关系,最终得出选项【详解】经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:;第二次循环:;第三次循环:,此时退出循环,根据判断框内为跳出循环的语句,故选D【点睛】题主要考查程序框图的循环结构流程图,属于中档题 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注
15、意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】分析程序中各变量、各语句的作用,根据流程图所示的顺序,即可得出结论.【详解】解:初始,第一次循环: ;第二次循环: ;第三次循环: ;经判断,此时跳出循环,输出.故答案为:【点睛】本题考查了程序框图的应用问题,解题的关键是对算法语句的理解,属基础题.14、2【解析】由这五位同学答对的题数分别是,得该组数据的平均数,则方
16、差15、【解析】由题意可得,解不等式可求【详解】解:由题意可得,解可得,故答案为【点睛】本题主要考查了函数的定义域的求解,属于基础题16、-1【解析】讨论三种情况,a0时,根据均值不等式得到a(a)14,计算等号成立的条件得到答案.【详解】已知关于x的不等式(axa14)(x4)0,a0时,x(a)(x4)0,其中a0,故解集为(a,4),由于a(a)14,当且仅当a,即a1时取等号,a的最大值为4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为1;a0时,4(x4)0,解集为(,4),整数解有无穷多,故a0不符合条件; a0时,x(a)(x4)0,其中a4,故解集为(,4)(a,+)
17、,整数解有无穷多,故a0不符合条件;综上所述,a1故答案为:1【点睛】本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设坐标后根据向量的坐标运算即可得到轨迹方程.(2)联立直线和椭圆方程,用坐标表示出,得到,所以,代入韦达定理即可求解.【详解】(1)设,则,设,由得又由于,化简得的轨迹的方程为(2)设直线的方程为,与的方程联立,消去得,设,则,由已知,则,故直线,令,则,由于,所以,的取值范围为【点睛】此题考查轨迹问题,椭圆和直线相交,注意坐标表示向量进行转化的处理技巧,属于较难
18、题目.18、(1),.(2)见解析【解析】(1)分三种情况讨论即可(2)将,的值代入,然后利用均值定理即可.【详解】解:(1)不等式可化为.即有或或.解得,或或.所以不等式的解集为,故,.(2)由(1)知,即,由,得,当且仅当,即,时等号成立.故,即.【点睛】考查绝对值不等式的解法以及用均值定理证明不等式,中档题.19、(1);(2)2个,证明见解析【解析】(1)要恒成立,只要的最小值大于或等于零即可,所以只要讨论求解看是否有最小值;(2)将图像与图像的交点个数转化为方程实数解的个数问题,然后构造函数,再利用导数讨论此函数零点的个数.【详解】(1)的定义域为,因为,1当时,在上单调递减,时,使
19、得,与条件矛盾;2当时,由,得;由,得,所以在上单调递减,在上单调递增,即有,由恒成立,所以恒成立,令,若;若;而时,要使恒成立,故.(2)原问题转化为方程实根个数问题,当时,图象与图象有且仅有2个交点,理由如下:由,即,令,因为,所以是的一根;,1当时,所以在上单调递减,即在上无实根;2当时,则在上单调递递增,又,所以在上有唯一实根,且满足,当时,在上单调递减,此时在上无实根;当时,在上单调递增,故在上有唯一实根.3当时,由(1)知,在上单调递增,所以,故,所以在上无实根.综合1,2,3,故有两个实根,即图象与图象有且仅有2个交点.【点睛】此题考查不等式恒成立问题、函数与方程的转化思想,考查
20、导数的运用,属于较难题.20、(1)(2)【解析】(1)依题意可得,解方程组即可求出椭圆的方程;(2)设,则,设直线的方程为,联立直线与椭圆方程,消去,设,列出韦达定理,即可表示,再根据求出参数,从而得出,最后由点到直线的距离得到,由即可得解;【详解】解:(1),解得,椭圆的方程为.(2),可设,.,设直线的方程为,显然恒成立.设,则,.,解得,解得,.此时直线的方程为,点到直线的距离为,即此时四边形的面积为.【点睛】本题考查椭圆的标准方程及简单几何性质,直线与椭圆的综合应用,考查计算能力,属于中档题21、(1)30.2,29;(2)B设备【解析】(1)平均数的估计值为组中值与频率乘积的和;(
21、2)要注意指标值落在内的产品才视为合格品,列出A、B设备利润分布列,算出期望即可作出决策.【详解】(1)A设备生产的样本的频数分布表如下质量指标值频数41640121810.根据样本质量指标平均值估计A设备生产一件产品质量指标平均值为30.2.B设备生产的样本的频数分布表如下质量指标值频数2184814162根据样本质量指标平均值估计B设备生产一件产品质量指标平均值为29.(2)A设备生产一件产品的利润记为X,B设备生产一件产品的利润记为Y,X240180120PY240180120P若以生产一件产品的利润作为决策依据,企业应加大B设备的生产规模.【点睛】本题考查平均数的估计值、离散随机变量的期望,并利用期望作决策,是一个概率与统计综合题,本题是一道中档题.22、(1)7(2)14【解析】(1)在中,可得 ,结合正弦定理,即可求得答案;(2)根据余弦定理和三角形面积公式,即可求得答案.【详解】(1)在中,.(2),解得,.【点睛】本题主要考查了正弦定理和余弦定理解三角形,解题关键是掌握正弦定理边化角,考查了分析能力和计算能力,属于中档题.