《上海市卢湾高级中学2023届高三第二次调研数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《上海市卢湾高级中学2023届高三第二次调研数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下列与函数定义域和单调性都相同的函数是( )ABCD2如图,在中,点是的中点,过点的直线分别交直线,于不同的两点,若,则( )A1BC2D33如图所示程序框图,若判断框内为“”,则输出( )A2B10C34D984已知幂函数的图象过点,且,则,
2、的大小关系为( )ABCD5在区间上随机取一个实数,使直线与圆相交的概率为( )ABCD6已知函数,其中表示不超过的最大正整数,则下列结论正确的是( )A的值域是B是奇函数C是周期函数D是增函数7若x,y满足约束条件且的最大值为,则a的取值范围是( )ABCD8总体由编号为01,02,.,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A23B21C35D329已知函数为奇函数,则( )AB1C2D310不等式组表示的平面区域为,则( )A,B,C,D,11定义在上
3、函数满足,且对任意的不相等的实数有成立,若关于x的不等式在上恒成立,则实数m的取值范围是( )ABCD12已知直线与圆有公共点,则的最大值为( )A4BCD二、填空题:本题共4小题,每小题5分,共20分。13设满足约束条件,则的取值范围为_.14设是定义在上的函数,且,对任意,若经过点的一次函数与轴的交点为,且互不相等,则称为关于函数的平均数,记为.当_时,为的几何平均数.(只需写出一个符合要求的函数即可)15若变量,满足约束条件,则的最大值为_16在中,角的对边分别为,且若为钝角,则的面积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,(其中).(1)求
4、;(2)求证:当时,18(12分)选修45;不等式选讲已知函数(1)若的解集非空,求实数的取值范围;(2)若正数满足,为(1)中m可取到的最大值,求证:19(12分)若函数为奇函数,且时有极小值.(1)求实数的值与实数的取值范围;(2)若恒成立,求实数的取值范围.20(12分)已知数列的前项和为,且满足,各项均为正数的等比数列满足(1)求数列的通项公式;(2)若,求数列的前项和21(12分)如图,已知四边形的直角梯形,BC,为线段的中点,平面,为线段上一点(不与端点重合)(1)若,()求证:PC平面;()求平面与平面所成的锐二面角的余弦值;(2)否存在实数满足,使得直线与平面所成的角的正弦值为
5、,若存在,确定的值,若不存在,请说明理由22(10分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10030不经常阅读合计200(2)从该地区城镇居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为,若用样本的频率作为概率,求随机变量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.841
6、5.0246.6357.87910.828参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析函数的定义域和单调性,然后对选项逐一分析函数的定义域、单调性,由此确定正确选项.【详解】函数的定义域为,在上为减函数.A选项,的定义域为,在上为增函数,不符合.B选项,的定义域为,不符合.C选项,的定义域为,在上为减函数,符合.D选项,的定义域为,不符合.故选:C【点睛】本小题主要考查函数的定义域和单调性,属于基础题.2、C【解析】连接AO,因为O为BC中点,可由平行四边形法则得,再将其用,表示.由M、O、N三点共线可知,其表
7、达式中的系数和,即可求出的值.【详解】连接AO,由O为BC中点可得,、三点共线,.故选:C. 【点睛】本题考查了向量的线性运算,由三点共线求参数的问题,熟记向量的共线定理是关键.属于基础题.3、C【解析】由题意,逐步分析循环中各变量的值的变化情况,即可得解.【详解】由题意运行程序可得:,;,;,;不成立,此时输出.故选:C.【点睛】本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.4、A【解析】根据题意求得参数,根据对数的运算性质,以及对数函数的单调性即可判断.【详解】依题意,得,故,故,则.故选:A.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能
8、力,属基础题.5、D【解析】利用直线与圆相交求出实数的取值范围,然后利用几何概型的概率公式可求得所求事件的概率.【详解】由于直线与圆相交,则,解得.因此,所求概率为.故选:D.【点睛】本题考查几何概型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题.6、C【解析】根据表示不超过的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论.【详解】由表示不超过的最大正整数,其函数图象为选项A,函数,故错误;选项B,函数为非奇非偶函数,故错误;选项C,函数是以1为周期的周期函数,故正确;选项D,函数在区间上是增函数,但在整个定义域范围上不具备单调性,故
9、错误.故选:C【点睛】本题考查对题干的理解,属于函数新定义问题,可作出图象分析性质,属于较难题.7、A【解析】画出约束条件的可行域,利用目标函数的最值,判断a的范围即可【详解】作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.故选:A【点睛】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键8、B【解析】根据随机数表法的抽样方法,确定选出来的第5个个体的编号.【详解】随机数表第1行的第4列和第5列数字为4和6,所以从这两个数字开始,由左向右依次选取两个数字如下46,64,42,16,60,65,80,56,26,16,55,43,50,2
10、4,23,54,89,63,21,其中落在编号01,02,39,40内的有:16,26,16,24,23,21,依次不重复的第5个编号为21.故选:B【点睛】本小题主要考查随机数表法进行抽样,属于基础题.9、B【解析】根据整体的奇偶性和部分的奇偶性,判断出的值.【详解】依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以.故选:B【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.10、D【解析】根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,
11、其中 ,设,则,的几何意义为直线在轴上的截距的2倍,由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;设,则的几何意义为点与点连线的斜率,由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.11、B【解析】结合题意可知是偶函数,且在单调递减,化简题目所给式子,建立不等式,结合导函数与原函数的单调性关系,构造新函数,计算最值,即可.【详解】结合题意可知为偶函数,且在单调递减,故可以转换为对应于恒成立,即即对恒成立即对恒成立令,则上递增,
12、在上递减,所以令,在上递减所以.故,故选B.【点睛】本道题考查了函数的基本性质和导函数与原函数单调性关系,计算范围,可以转化为函数,结合导函数,计算最值,即可得出答案.12、C【解析】根据表示圆和直线与圆有公共点,得到,再利用二次函数的性质求解.【详解】因为表示圆,所以,解得,因为直线与圆有公共点,所以圆心到直线的距离,即 ,解得,此时, 因为,在递增,所以的最大值.故选:C【点睛】本题主要考查圆的方程,直线与圆的位置关系以及二次函数的性质,还考查了运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意画出可行域,转化目标函数为,数形结合即可得到的最值
13、,即可得解.【详解】由题意画出可行域,如图:转化目标函数为,通过平移直线,数形结合可知:当直线过点A时,直线截距最大,z最小;当直线过点C时,直线截距最小,z最大.由可得,由可得,当直线过点时,;当直线过点时,所以.故答案为:.【点睛】本题考查了简单的线性规划,考查了数形结合思想,属于基础题.14、【解析】由定义可知三点共线,即,通过整理可得,继而可求出正确答案.【详解】解:根据题意,由定义可知:三点共线.故可得:,即,整理得:,故可以选择等.故答案为: .【点睛】本题考查了两点的斜率公式,考查了推理能力,考查了运算能力.本题关键是分析出三点共线.15、【解析】根据约束条件可以画出可行域,从而
14、将问题转化为直线在轴截距最大的问题的求解,通过数形结合的方式可确定过时,取最大值,代入可求得结果.【详解】由约束条件可得可行域如下图阴影部分所示: 将化为,则最大时,直线在轴截距最大;由直线平移可知,当过时,在轴截距最大,由得:,.故答案为:.【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在轴截距的最值的求解问题,通过数形结合的方式可求得结果.16、【解析】转化为,利用二倍角公式可求解得,结合余弦定理可得b,再利用面积公式可得解.【详解】因为,所以又因为,且为锐角,所以由余弦定理得,即,解得,所以故答案为:【点睛】本题考查了正弦定理和余弦定理的综合应用,考查了学生综合分析
15、,转化划归,数学运算的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】(1)取,则;取,则,; (2)要证,只需证,当时,;假设当时,结论成立,即,两边同乘以3 得:而,即时结论也成立,当时,成立.综上原不等式获证.18、 (1);(2)见解析.【解析】试题分析:(1)讨论三种情况去绝对值符号,可得所以,由此得,解得;(2)利用分析法,由(1)知,所以,因为,要证,只需证,即证,只需证 即可得结果.试题解析:(1)去绝对值符号,可得所以,所以,解得,所以实数的取值范围为(2)由(1)知,所以因为,所以要证,只需证,即证,即证.因为
16、,所以只需证,因为,成立,所以解法二:x2+y2=2,x、yR+,x+y2xy 设:证明:x+y-2xy= =令, 原式= = = = 当时, 19、(1), ;(2)【解析】(1)由奇函数可知 在定义域上恒成立,由此建立方程,即可求出实数的值;对函数进行求导,通过导数求出,若,则恒成立不符合题意,当,可证明,此时时有极小值.(2)可知,进而得到,令,通过导数可知在上为单调减函数,由可得,从而可求实数的取值范围.【详解】(1)由函数为奇函数,得在定义域上恒成立,所以,化简可得,所以.则,令,则.故当时,;当时,故在上递减,在上递增,若,则恒成立,单调递增,无极值点;所以,解得,取,则又函数的图
17、象在区间上连续不间断,故由函数零点存在性定理知在区间上,存在为函数的零点,为极小值,所以,的取值范围是.(2)由满足,代入,消去可得.构造函数,所以,当时,即恒成立,故在上为单调减函数,其中.则可转化为,故,由,设,可得当时,则在上递增,故.综上,的取值范围是.【点睛】本题考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,考查了奇函数的定义,考查了转化的思想.对于 恒成立的问题,常转化为求 的最小值,使;对于 恒成立的问题,常转化为求 的最大值,使.20、(1);(2)【解析】(1)由化为,利用数列的通项公式和前n项和的关系,得到是首项为,公差为的等差数列求解.(2)由(1)得到,再
18、利用错位相减法求解.【详解】(1)可以化为,又时,数列从开始成等差数列,代入得是首项为,公差为的等差数列,.(2)由(1)得,两式相减得,.【点睛】本题主要考查数列的通项公式和前n项和的关系和错位相减法求和,还考查了运算求解的能力,属于中档题.21、(1)()证明见解析()(2)存在,【解析】(1)(i)连接交于点,连接,依题意易证四边形为平行四边形,从而有,由此能证明PC平面(ii)推导出,以为原点建立空间直角坐标系,利用向量法求解;(2)设,求出平面的法向量,利用向量法求解.【详解】(1)()证明:连接交于点,连接,因为为线段的中点,所以,因为,所以因为所以四边形为平行四边形所以又因为,所
19、以又因为平面,平面,所以平面()解:如图,在平行四边形中因为,所以以为原点建立空间直角坐标系则,所以, 平面的法向量为设平面的法向量为,则,即,取,得,设平面和平面所成的锐二面角为,则所以锐二面角的余弦值为(2)设所以,设平面的法向量为,则,取,得,因为直线与平面所成的角的正弦值为,所以解得所以存在满足,使得直线与平面所成的角的正弦值为.【点睛】此题二查线面平行的证明,考查锐二面角的余弦值的求法,考查满足线面角的正弦值的点是否存在的判断与求法,考查空间中线线,线面,面面的位置关系等知识,考查了推理能力与计算能力,属于中档题.22、(1)见解析,有99%的把握认为经常阅读与居民居住地有关.(2)【解析】(1)根据题意填写列联表,利用公式求出,比较与6.635的大小得结论;(2)由样本数据可得经常阅读的人的概率是,则,根据二项分布的期望公式计算可得;【详解】解:(1)由题意可得:城镇居民农村居民合计经常阅读10030130不经常阅读403070合计14060200则,所以有99%的把握认为经常阅读与居民居住地有关.(2)根据样本估计,从该地区城镇居民中随机抽取1人,抽到经常阅读的人的概率是,且,所以随机变量的期望为.【点睛】本题考查独立性检验的应用,考查离散型随机变量的数学期望的计算,考查运算求解能力,属于基础题