甘肃省甘南2023年中考考前最后一卷数学试卷含解析.doc

上传人:lil****205 文档编号:88318006 上传时间:2023-04-25 格式:DOC 页数:19 大小:761.50KB
返回 下载 相关 举报
甘肃省甘南2023年中考考前最后一卷数学试卷含解析.doc_第1页
第1页 / 共19页
甘肃省甘南2023年中考考前最后一卷数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《甘肃省甘南2023年中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《甘肃省甘南2023年中考考前最后一卷数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,已知点A,B分别是反比例函数y=(x0),y=(x0)的图象上的点,且AOB=90,tanBAO=,则k的值为()A2B2C4D42已知y

2、关于x的函数图象如图所示,则当y0时,自变量x的取值范围是()Ax0B1x1或x2Cx1Dx1或1x23如图,已知数轴上的点A、B表示的实数分别为a,b,那么下列等式成立的是( )ABCD4商场将某种商品按原价的8折出售,仍可获利20元已知这种商品的进价为140元,那么这种商品的原价是()A160元 B180元 C200元 D220元5一个数和它的倒数相等,则这个数是( )A1B0C1D1和06不等式x+13的解集是()Ax4Bx4Cx4Dx47在下列四个标志中,既是中心对称又是轴对称图形的是()ABCD8如图,在正五边形ABCDE中,连接BE,则ABE的度数为( )A30B36C54D729

3、如图,把ABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN上,直线MNAB,则点O是ABC的( )A外心B内心C三条中线的交点D三条高的交点10如图,在RtABC中,ACB=90,AC=BC=1,将绕点A逆时针旋转30后得到RtADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )ABC-D二、填空题(共7小题,每小题3分,满分21分)11如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为_.12若关于x的方程kx2+2x1=0有实数根,则k的取值范围是_13因式分解:3a2-6a+3=_14如图,在ABC中,AB=AC=6,BAC

4、=90,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_15让我们轻松一下,做一个数字游戏: 第一步:取一个自然数,计算得; 第二步:算出的各位数字之和得,计算得; 第三步:算出的各位数字之和得,再计算得; 依此类推,则_16如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45,景点B的俯角为30,此时C到地面的距离CD为100米,则两景点A、B间的距离为_米(结果保留根号)17抛物线 y3x26x+a 与 x 轴只有一个公共点,则

5、 a 的值为_三、解答题(共7小题,满分69分)18(10分)小张同学尝试运用课堂上学到的方法,自主研究函数y=的图象与性质下面是小张同学在研究过程中遇到的几个问题,现由你来完成:(1)函数y=自变量的取值范围是 ;(2)下表列出了y与x的几组对应值:x2m12y1441表中m的值是 ;(3)如图,在平面直角坐标系xOy中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图象;(4)结合函数y=的图象,写出这个函数的性质: (只需写一个)19(5分)如图,RtABC中,C=90,A=30,BC=1(1)实践操作:尺规作图,不写作法,保留作图痕迹作ABC的角平分线交AC于点D作线段BD的

6、垂直平分线,交AB于点E,交BC于点F,连接DE、DF(2)推理计算:四边形BFDE的面积为 20(8分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF连接BF,作EHBF所在直线于点H,连接CH(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是_;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值21(10分)某商场销售一批名牌衬衫,平均每天可以销售20

7、件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?22(10分)如图,菱形ABCD中,已知BAD=120,EGF=60, EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;(2)知识探究:如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);如图丙,在顶点G运动的过程中,若,探究线段EC、CF与BC的数量关系;(3)

8、问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当2时,求EC的长度23(12分)列方程解应用题:某商场用8万元购进一批新款衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4元/件,结果共用去17.6万元该商场第一批购进衬衫多少件?商场销售这种衬衫时,每件定价都是58元,剩至150件时按八折出售,全部售完售完这两批衬衫,商场共盈利多少元?24(14分)如图,正方形ABCD中,BD为对角线(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若AB=4,求DEF的周长参考答案一、选

9、择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】首先过点A作ACx轴于C,过点B作BDx轴于D,易得OBDAOC,又由点A,B分别在反比例函数y= (x0),y=(x0)的图象上,即可得SOBD= ,SAOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值【详解】解:过点A作ACx轴于C,过点B作BDx轴于D,ACO=ODB=90,OBD+BOD=90,AOB=90,BOD+AOC=90,OBD=AOC,OBDAOC,又AOB=90,tanBAO= ,=, = ,即 ,解得k=4,又k0,k=-4,故选:D【点睛】此题考查了相似三角形的判定与性质、反比例

10、函数的性质以及直角三角形的性质解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。2、B【解析】y0时,即x轴下方的部分,自变量x的取值范围分两个部分是1x2.故选B.3、B【解析】根据图示,可得:b0a,|b|a|,据此判断即可【详解】b0a,|b|a|,a+b0,|a+b|= -a-b故选B【点睛】此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握4、C【解析】利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可【详解】解:设原价为x元,根据题意可得:80%x=140+20,解得:x=1所以该商品的原价为1元;故选:C【点睛】此题主要考查了一元一

11、次方程的应用,根据题意列出方程是解决问题的关键5、C【解析】根据倒数的定义即可求解.【详解】的倒数等于它本身,故符合题意.故选:.【点睛】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.6、A【解析】根据一元一次不等式的解法,移项,合并同类项,系数化为1即可得解【详解】移项得:x31,合并同类项得:x2,系数化为1得:x-4.故选A.【点睛】本题考查了解一元一次不等式,解题的关键是熟练的掌握一元一次不等式的解法.7、C【解析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解【详解】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不

12、是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误故选C【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合8、B【解析】在等腰三角形ABE中,求出A的度数即可解决问题【详解】解:在正五边形ABCDE中,A=(5-2)180=108又知ABE是等腰三角形, AB=AE,ABE=(180-108)=36故选B【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题

13、,比较简单9、B【解析】利用平行线间的距离相等,可知点到、的距离相等,然后可作出判断.【详解】解:如图,过点作于,于,于.图1,(夹在平行线间的距离相等).如图:过点作于,作于E,作于.由题意可知: , ,图中的点是三角形三个内角的平分线的交点,点是的内心,故选B.【点睛】本题考查平行线间的距离,角平分线定理,三角形的内心,解题的关键是判断出.10、A【解析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到RtADERtACB,于是S阴影部分=SADE+S扇形ABD-SABC=S扇形ABD【详解】ACB=90,AC=BC=1,AB=,S扇形ABD=,又RtAB

14、C绕A点逆时针旋转30后得到RtADE,RtADERtACB,S阴影部分=SADE+S扇形ABDSABC=S扇形ABD=,故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、xx75.【解析】试题解析:设长方形墙砖的长为x厘米,可得:xx75.12、k-1【解析】首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式=b2-4ac=4+4k0,两者结合得出答案即可【详解】当时,方程是一元一次方程:,方程有实数根;当时,方程是一元二次方程, 解得:且.综上所述,关于的方程有实数根,则的取值范围是.故

15、答案为【点睛】考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略这种情况.13、3(a1)2【解析】先提公因式,再套用完全平方公式.【详解】解:3a2-6a+3=3(a2-2a+1)=3(a-1)2.【点睛】考点:提公因式法与公式法的综合运用14、或【解析】过点A作AGBC,垂足为G,根据等腰直角三角形的性质可得AG=BG=CG=6,设BD=x,则DF=BD=x,EF=7-x,然后利用勾股定理可得到关于x的方程,从而求得DG的长,继而可求得AD的长.【详解】如图所示,过点A作AGBC,垂足为G,AB=AC=6,BAC=90,BC=12,AB=AC,AGBC,AG=BG=CG=

16、6,设BD=x,则EC=12-DE-BD=12-5-x=7-x,由翻折的性质可知:DFA=B=C=AFE=45,DB=DF,EF=FC,DF=x,EF=7-x,在RtDEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=4,当BD=3时,DG=3,AD=,当BD=4时,DG=2,AD=,AD的长为或,故答案为:或.【点睛】本题考查了翻折的性质、勾股定理的应用、等腰直角三角形的性质,正确添加辅助线,灵活运用勾股定理是解题的关键.15、1【解析】根据题意可以分别求得a1,a2,a3,a4,从而可以发现这组数据的特点,三个一循环,从而可以求得a2019的值【详解】解:由题意

17、可得,a1=52+1=26,a2=(2+6)2+1=65,a3=(6+5)2+1=1,a4=(1+2+2)2+1=26,20193=673,a2019= a3=1,故答案为:1【点睛】本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值16、100+100【解析】【分析】由已知可得ACD=MCA=45,B=NCB=30,继而可得DCB=60,从而可得AD=CD=100米,DB= 100米,再根据AB=AD+DB计算即可得.【详解】MN/AB,MCA=45,NCB=30,ACD=MCA=45,B=NCB=30,CDAB,CDA=CDB=90,DCB

18、=60,CD=100米,AD=CD=100米,DB=CDtan60=CD=100米,AB=AD+DB=100+100(米), 故答案为:100+100【点睛】本题考查了解直角三角形的应用仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形注意方程思想与数形结合思想的应用 17、3【解析】根据抛物线与x轴只有一个公共交点,则判别式等于0,据此即可求解【详解】抛物线y=3x26x+a与x轴只有一个公共点,判别式=36-12a=0,解得:a=3,故答案为3【点睛】本题考查了二次函数图象与x轴的公共点的个数的判定方法,如果0,则抛物线与x轴有两个不同的交点;如果=0,与x轴有一个交点;如果0

19、,与x轴无交点.三、解答题(共7小题,满分69分)18、(1)x0;(2)1;(3)见解析;(4)图象关于y轴对称.【解析】(1)由分母不等于零可得答案;(2)求出y=1时x的值即可得;(3)根据表格中的数据,描点、连线即可得;(4)由函数图象即可得【详解】(1)函数y=的定义域是x0,故答案为x0;(2)当y=1时,=1,解得:x=1或x=1,m=1,故答案为1;(3)如图所示:(4)图象关于y轴对称,故答案为图象关于y轴对称【点睛】本题主要考查反比例函数的图象与性质,解题的关键是掌握反比例函数自变量的取值范围、函数值的求法、列表描点画函数图象及反比例函数的性质19、 (1)详见解析;(2)

20、.【解析】(1)利用基本作图(作一个角等于已知角和作已知线段的垂直平分线)作出BD和EF;(2)先证明四边形BEDF为菱形,再利用含30度的直角三角形三边的关系求出BF和CD,然后利用菱形的面积公式求解【详解】(1)如图,DE、DF为所作;(2)C=90,A=30,ABC=10,AB=2BC=2BD为ABC的角平分线,DBC=EBD=30EF垂直平分BD,FB=FD,EB=ED,FDB=DBC=30,EDB=EBD=30,DEBF,BEDF,四边形BEDF为平行四边形,而FB=FD,四边形BEDF为菱形DFC=FBD+FDB=30+30=10,FDC=9010=30在RtBDC中,BC=1,D

21、BC=30,DC=在RtFCD中,FDC=30,FC=2,FD=2FC=4,BF=FD=4,四边形BFDE的面积=42=8故答案为:8【点睛】本题考查了作图基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)20、(1)CH=AB;(2)成立,证明见解析;(3)【解析】(1)首先根据全等三角形判定的方法,判断出ABFCBE,即可判断出1=2;然后根据EHBF,BCE=90,可得C、H两点都在以BE为直径的圆上,判断出4=HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可(2)首先根据全等

22、三角形判定的方法,判断出ABFCBE,即可判断出1=2;然后根据EHBF,BCE=90,可得C、H两点都在以BE为直径的圆上,判断出4=HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可(3)首先根据三角形三边的关系,可得CKAC+AK,据此判断出当C、A、K三点共线时,CK的长最大;然后根据全等三角形判定的方法,判断出DFKDEH,即可判断出DK=DH,再根据全等三角形判定的方法,判断出DAKDCH,即可判断出AK=CH=AB;最后根据CK=AC+AK=AC+AB,求出线段CK长的最大值是多少即可【详解】解:(1)如图1,连接BE,在正方形ABCD中,AB=BC=CD=A

23、D,A=BCD=ABC=90,点E是DC的中点,DE=EC,点F是AD的中点,AF=FD,EC=AF,在ABF和CBE中,ABFCBE,1=2,EHBF,BCE=90,C、H两点都在以BE为直径的圆上,3=2,1=3,3+4=90,1+HBC=90,4=HBC,CH=BC,又AB=BC,CH=AB(2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立如图2,连接BE,在正方形ABCD中,AB=BC=CD=AD,A=BCD=ABC=90,AD=CD,DE=DF,AF=CE,在ABF和CBE中, ABFCBE,1=2,EHBF,BCE=90,C、H两点都在以BE为直径的圆上,3

24、=2,1=3,3+4=90,1+HBC=90,4=HBC,CH=BC,又AB=BC,CH=AB(3)如图3,CKAC+AK,当C、A、K三点共线时,CK的长最大,KDF+ADH=90,HDE+ADH=90,KDF=HDE,DEH+DFH=360-ADC-EHF=360-90-90=180,DFK+DFH=180,DFK=DEH,在DFK和DEH中,DFKDEH,DK=DH,在DAK和DCH中,DAKDCH,AK=CH又CH=AB,AK=CH=AB,AB=3,AK=3,AC=3,CK=AC+AK=AC+AB=,即线段CK长的最大值是考点:四边形综合题21、每件衬衫应降价1元.【解析】利用衬衣平均

25、每天售出的件数每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x元.根据题意,得 (40-x)(1+2x)=110,整理,得x2-30x+10=0,解得x1=10,x2=1“扩大销售量,减少库存”,x1=10应舍去,x=1.答:每件衬衫应降价1元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数每件盈利=每天销售的利润是解题关键.22、(1)证明见解析(2)线段EC,CF与BC的数量关系为:CECFBC.CECFBC(3)【解析】(1)利用包含60角的菱形,证明BAECAF,可求证;(2)由特殊到一般,证明CAECGE,从而可以得到EC

26、、CF与BC的数量关系(3) 连接BD与AC交于点H,利用三角函数BH ,AH,CH的长度,最后求BC长度.【详解】解:(1)证明:四边形ABCD是菱形,BAD120,BAC60,BACF60,AB=BC,AB=AC,BAEEACEACCAF60,BAE=CAF,在BAE和CAF中,,BAECAF,BECF,ECCFECBEBC,即ECCFBC; (2)知识探究:线段EC,CF与BC的数量关系为:CECFBC.理由:如图乙,过点A作AEEG,AFGF,分别交BC、CD于E、F类比(1)可得:EC+CF=BC,AEEG,CAECGE,同理可得:,即;CECFBC. 理由如下:过点A作AEEG,A

27、FGF,分别交BC、CD于E、F.类比(1)可得:ECCFBC,AEEG,CAECAE,CECE,同理可得:CFCF,CECFCECF(CECF)BC,即CECFBC; (3)连接BD与AC交于点H,如图所示:在RtABH中,AB8,BAC60,BHABsin608,AHCH=ABcos6084,GH1,CG413,t(t2),由(2)得:CECFBC,CEBC CF8.【点睛】本题属于相似形综合题,主要考查了全等三角形的判定和性质、菱形的性质,相似三角形的判定和性质等知识的综合运用,解题的关键是灵活运用这些知识解决问题,学会添加辅助线构造相似三角形23、(1)2000件;(2)90260元【

28、解析】(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,根据单价=总价数量结合第二批比第一批的进价涨了4元/件,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)用(1)的结论2可求出第二批购进该种衬衫的数量,再利用总利润=销售收入-成本,即可得出结论【详解】解:(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,根据题意得:-=4,解得:x=2000,经检验,x=2000是所列分式方程的解,且符合题意答:商场第一批购进衬衫2000件(2)20002=4000(件),(2000+4000-150)58+150580.8-80000-176000=90260(元)答:售完这

29、两批衬衫,商场共盈利90260元【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算24、(1)见解析;(2)2+1【解析】分析:(1)、根据中垂线的做法作出图形,得出答案;(2)、根据中垂线和正方形的性质得出DF、DE和EF的长度,从而得出答案详解:(1)如图,EF为所作;(2)解:四边形ABCD是正方形,BDC=15,CD=BC=1,又EF垂直平分CD,DEF=90,EDF=EFD=15, DE=EF=CD=2,DF=DE=2,DEF的周长=DF+DE+EF=2+1点睛:本题主要考查的是中垂线的性质,属于基础题型理解中垂线的性质是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁