《江苏省盱眙县2023年中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省盱眙县2023年中考考前最后一卷数学试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1反比例函数y=(a0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MCx轴于点C,交y=的图象于点A;MDy轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:SODB=SOCA;四边形OAMB的面积不变;当点A
2、是MC的中点时,则点B是MD的中点其中正确结论的个数是( )A0B1C2D32的相反数是 ( )A6B6CD3如图,若数轴上的点A,B分别与实数1,1对应,用圆规在数轴上画点C,则与点C对应的实数是()A2B3C4D54把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A16B17C18D195对于代数式ax2+bx+c(a0),下列说法正确的是( ) 如果存在两个实数pq,使得ap2+bp+c=aq2+bq+c,则a+bx+c=a(x-p)(x-q)存在三个实数mns,使得am2+bm+c=an2+bn+c=as2+bs+c如果ac0,则一定存在两
3、个实数mn,使am2+bm+c0an2+bn+c如果ac0,则一定存在两个实数mn,使am2+bm+c0an2+bn+cABCD6已知抛物线y=ax2+bx+c(a1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:抛物线过原点;ab+c1;当x1时,y随x增大而增大;抛物线的顶点坐标为(2,b);若ax2+bx+c=b,则b24ac=1其中正确的是()ABCD7定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等)现从两位数中任取一个,恰好是“下滑数”的概率为( )ABCD8若一个正多边形的每个内角为150,则
4、这个正多边形的边数是()A12B11C10D99有一个数用科学记数法表示为5.2105,则这个数是()A520000BC52000D520000010|3|的值是( )A3BC3D二、填空题(本大题共6个小题,每小题3分,共18分)11有一组数据:3,5,5,6,7,这组数据的众数为_12比较大小: _1(填“”、“”或“”)13我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中ab)叫做互为交换函数如y=3x2+4x与y=4x2+3x是互为交换函数如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=_14计算:|5|=_15有公共顶点A,B的正五边形和正六边形按如
5、图所示位置摆放,连接AC交正六边形于点D,则ADE的度数为()A144B84C74D5416请你算一算:如果每人每天节约1粒大米,全国13亿人口一天就能节约_千克大米!(结果用科学记数法表示,已知1克大米约52粒)三、解答题(共8题,共72分)17(8分)计算:sin30+(4)0+|18(8分)解方程(1)x11x10(1)(x+1)14(x1)119(8分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图 态度非常喜欢喜欢一般不知道频数90b3010频率a0.3
6、50.20 请你根据统计图、表,提供的信息解答下列问题:(1)该校这次随即抽取了 名学生参加问卷调查:(2)确定统计表中a、b的值:a= ,b= ;(3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数20(8分)计算.21(8分)如图(1),已知点G在正方形ABCD的对角线AC上,GEBC,垂足为点E,GFCD,垂足为点F(1)证明与推断:求证:四边形CEGF是正方形;推断:的值为 :(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转角(045),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一
7、条直线上时,如图(3)所示,延长CG交AD于点H若AG=6,GH=2,则BC= 22(10分)王老师对试卷讲评课中九年级学生参与的深度与广度进行评价调查,每位学生最终评价结果为主动质疑、独立思考、专注听讲、讲解题目四项中的一项评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题: (1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在扇形的圆心角度数为度;(3)请将频数分布直方图补充完整;(4)如果全市九年级学生有8000名,那么在试卷评讲课中,“独立思考”的九年级学生约有多少人?23(12分
8、)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;搅匀后,从中任意取一个球,标号为正数的概率是 ; 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.24在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第
9、四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少? 参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.【详解】由于A、B在同一反比例函数y=图象上,由反比例系数的几何意义可得SODB=SOCA=1,正确;由于矩形OCMD、ODB、OCA为定值,则四边形MAOB的面积不会发生变化,正确;连接OM,点A是MC的中点,则SODM=SOCM=,因SODB=SOCA=1,所以OBD和OBM面积相等,点B一定是MD的中点正确;故答案选D考点:反比例系数的几何意义.2、D【解
10、析】根据相反数的定义解答即可【详解】根据相反数的定义有:的相反数是故选D【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“”号;一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是13、B【解析】由数轴上的点A、B 分别与实数1,1对应,即可求得AB=2,再根据半径相等得到BC=2,由此即求得点C对应的实数【详解】数轴上的点 A,B 分别与实数1,1 对应,AB=|1(1)|=2,BC=AB=2,与点 C 对应的实数是:1+2=3. 故选B【点睛】本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键4、A【解析】一个n边形剪去一个角后,剩下的形状
11、可能是n边形或(n+1)边形或(n-1)边形故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.【点睛】此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.5、A【解析】设 (1)如果存在两个实数pq,使得ap2+bp+c=aq2+bq+c,则说明在中,当x=p和x=q时的y值相等,但并不能说明此时p、q是与x轴交点的横坐标,故中结论不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,则说明在中当x=m、n、s时,
12、对应的y值相等,因此m、n、s中至少有两个数是相等的,故错误;(3)如果ac0,则b2-4ac0,则的图象和x轴必有两个不同的交点,所以此时一定存在两个实数mn,使am2+bm+c0an2+bn+c,故在结论正确;(4)如果ac0,则b2-4ac的值的正负无法确定,此时的图象与x轴的交点情况无法确定,所以中结论不一定成立.综上所述,四种说法中正确的是.故选A.6、B【解析】由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论正确;当x=1时,y1,得到ab+c1,结论错误;根据抛物线的对称性得到结论错误;将x=2代入二次函数解析式中结合4a+b+c=1,即可求出抛物线的顶点
13、坐标,结论正确;根据抛物线的顶点坐标为(2,b),判断【详解】解:抛物线y=ax2+bx+c(a1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),抛物线与x轴的另一交点坐标为(1,1),抛物线过原点,结论正确;当x=1时,y1,ab+c1,结论错误;当x1时,y随x增大而减小,错误;抛物线y=ax2+bx+c(a1)的对称轴为直线x=2,且抛物线过原点,c=1,b=4a,c=1,4a+b+c=1,当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,抛物线的顶点坐标为(2,b),结论正确;抛物线的顶点坐标为(2,b),ax2+bx+c=b时,b24ac=1,正确
14、;综上所述,正确的结论有:故选B【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定7、A【解析】分析:根据概率的求法,找准两点:全部情况的总数:根据题意得知这样的两位数共有90个;符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、
15、81、80、98、97、96、95、94、93、92、91、90共有45个,概率为故选A点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=8、A【解析】根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180150=30,再根据多边形外角和为360度即可求出边数【详解】一个正多边形的每个内角为150,这个正多边形的每个外角=180150=30,这个正多边形的边数=1故选:A【点睛】本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质9、A【解析】科学记数法的
16、表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】5.2105=520000, 故选A【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值10、A【解析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数, 故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.二、填空题(本大题共6个小题,每小题3分,共18分)11、
17、1【解析】根据众数的概念进行求解即可得.【详解】在数据3,1,1,6,7中1出现次数最多,所以这组数据的众数为1,故答案为:1【点睛】本题考查了众数的概念,熟知一组数据中出现次数最多的数据叫做众数是解题的关键12、【解析】根据算术平方根的定义即可求解【详解】解:1,1,1故答案为【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:被开方数a是非负数;算术平方根a本身是非负数13、1【解析】根据题意可以得到交换函数,由顶点关于x轴对称,从而得到关于b的方程,可以解答本题【详解】由题意函数y=1x1+bx的交换函数为y=bx1+1x y=1x1+bx=,y=bx1+1x=,函数y=1x1
18、+bx与它的交换函数图象顶点关于x轴对称,=且,解得:b=1故答案为1【点睛】本题考查了二次函数的性质理解交换函数的意义是解题的关键14、1【解析】分析:直接利用二次根式以及绝对值的性质分别化简得出答案详解:原式=5-3=1故答案为1.点睛:此题主要考查了实数运算,正确化简各数是解题关键15、B【解析】正五边形的内角是ABC=108,AB=BC,CAB=36,正六边形的内角是ABE=E=120,ADE+E+ABE+CAB=360,ADE=36012012036=84,故选B16、2.51【解析】先根据有理数的除法求出节约大米的千克数,再用科学计数法表示,对于一个绝对值较大的数,用科学记数法写成
19、 的形式,其中,n是比原整数位数少1的数.【详解】1 300 000 000521 000(千克)=25 000(千克)=2.51(千克)故答案为2.51【点睛】本题考查了有理数的除法和正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.三、解答题(共8题,共72分)17、1.【解析】分析:原式利用特殊角角的三角函数值,平方根定义,零指数幂法则,以及绝对值的代数意义化简,计算即可求出值详解:原式=2+1+=1点睛:本题考查了实数的运算,熟练掌握运算法则是解答本题的关键18、(1)x1=1+,x1=1;(1)x1=3,x1=【解析】(1)配方法解;(1)因式分解法解
20、.【详解】(1)x11x1=2,x11x+1=1+1,(x1)1=3,x1= ,x=1,x1=1,x1=1,(1)(x+1)1=4(x1)1(x+1)14(x1)1=2(x+1)11(x1)1=2(x+1)1(1x1)1=2(x+11x+1)(x+1+1x1)=2(x+3)(3x1)=2x1=3,x1=【点睛】考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程19、(1)200,;(2)a=0.45,b=70;(3)900名.【解析】(1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比
21、值就可以计算出2000名学生中的人数.【详解】解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根据频数的计算公式可得,总数=频数/频率=(名);(2)“非常喜欢”频数90,a= ;(3).故答案为(1)200,;(2)a=0.45,b=70;(3)900名.【点睛】此题重点考察学生对频数和频率的应用,掌握频率的计算公式是解题的关键.20、【解析】分析:先计算,再做除法,结果化为整式或最简分式.详解:.点睛:本题考查了分式的混合运算解题过程中注意运算顺序解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.21、(1)四边形CEGF是正方形;(2)线段AG与BE之间的
22、数量关系为AG=BE;(3)3【解析】(1)由、结合可得四边形CEGF是矩形,再由即可得证;由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得;(2)连接CG,只需证即可得;(3)证得,设,知,由得、,由可得a的值【详解】(1)四边形ABCD是正方形,BCD=90,BCA=45,GEBC、GFCD,CEG=CFG=ECF=90,四边形CEGF是矩形,CGE=ECG=45,EG=EC,四边形CEGF是正方形;由知四边形CEGF是正方形,CEG=B=90,ECG=45,GEAB,故答案为;(2)连接CG,由旋转性质知BCE=ACG=,在RtCEG和RtCBA中,=、=,=,ACGBCE,
23、线段AG与BE之间的数量关系为AG=BE;(3)CEF=45,点B、E、F三点共线,BEC=135,ACGBCE,AGC=BEC=135,AGH=CAH=45,CHA=AHG,AHGCHA,设BC=CD=AD=a,则AC=a,则由得,AH=a,则DH=ADAH=a,CH=a,由得,解得:a=3,即BC=3,故答案为3【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.22、(1)560; (2)54;(3)详见解析;(4)独立思考的学生约有840人.【解析】(1)由“专注听讲”
24、的学生人数除以占的百分比求出调查学生总数即可;(2)由“主动质疑”占的百分比乘以360即可得到结果;(3)求出“讲解题目”的学生数,补全统计图即可;(4)求出“独立思考”学生占的百分比,乘以2800即可得到结果【详解】(1)根据题意得:22440%=560(名),则在这次评价中,一个调查了560名学生;故答案为:560;(2)根据题意得:360=54,则在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;故答案为:54;(3)“讲解题目”的人数为560-(84+168+224)=84,补全统计图如下:(4)根据题意得:2800(人),则“独立思考”的学生约有840人【点睛】本题考
25、查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小23、(1);(2)【解析】【分析】(1)直接运用概率的定义求解;(2)根据题意确定k0,b0,再通过列表计算概率.【详解】解:(1)因为1、-1、2三个数中由两个正数,所以从中任意取一个球,标号为正数的概率是.(2)因为直线y=kx+b经过一、二、三象限,所以k0,b0,又因为取情况:k b1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9种情况,符合条件的有4种,所以直线y=kx
26、+b经过一、二、三象限的概率是.【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .24、(1)a=0.3,b=4;(2)99人;(3)【解析】分析:(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案详解:(1)a=1-0.15-0.35-0.20=0.3;总人数为:30.15=20(人),b=200.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180(0.35+0.20)=99(人);(3)画树状图得:共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,所选两人正好都是甲班学生的概率是:点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识用到的知识点为:概率=所求情况数与总情况数之比