湖南省耒阳市2023年中考适应性考试数学试题含解析.doc

上传人:lil****205 文档编号:88317989 上传时间:2023-04-25 格式:DOC 页数:17 大小:893.50KB
返回 下载 相关 举报
湖南省耒阳市2023年中考适应性考试数学试题含解析.doc_第1页
第1页 / 共17页
湖南省耒阳市2023年中考适应性考试数学试题含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《湖南省耒阳市2023年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《湖南省耒阳市2023年中考适应性考试数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1计算结果是( )A0B1C1Dx2纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为()A米B米C米D米3如图,ABC纸片中,A56,C88沿过点B的直线折叠这个三

2、角形,使点C落在AB边上的点E处,折痕为BD则BDE的度数为( )A76B74C72D704如图,ABC内接于O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于( )A3:1B4:1C5:2D7:25下列运算正确的是( )ABCD6数据”1,2,1,3,1”的众数是( )A1 B1.5 C1.6 D37如图,小岛在港口P的北偏西60方向,距港口56海里的A处,货船从港口P出发,沿北偏东45方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( )A7海里/时B7海里/时C7海里/时D28海里/时8下列各数中是有理数的是()AB0CD9若

3、| =,则一定是( )A非正数B正数C非负数D负数10估计+1的值在()A2和3之间B3和4之间C4和5之间D5和6之间二、填空题(共7小题,每小题3分,满分21分)11分解因式:m2n2mn+n= 12计算:(2)=_.13长城的总长大约为6700000m,将数6700000用科学记数法表示为_14九章算术是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是_步15方程的两个根为、,则的值等于_16用半径为6cm,圆心角为120

4、的扇形围成一个圆锥,则圆锥的底面圆半径为_cm17一艘货轮以18km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15方向,则此时货轮与灯塔B的距离是_km.三、解答题(共7小题,满分69分)18(10分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角ECA=30,旗杆底部B的俯角ECB=45,求旗杆AB的髙19(5分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍

5、,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?20(8分)一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1(km),快车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1,y2与x的函数关系图象如图所示,S与x的函数关系图象如图所示:(1)图中的a=_,b=_(2)求快车在行驶的过程中S关于x的函数关系式(3)直接写出两车出发多长时间相距200km?21(10分)先化简,再求值:1,其中a=2sin60tan45,b=122(

6、10分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64,在斜坡上的点D处测得楼顶B的仰角为45,其中A、C、E在同一直线上求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin640.9,tan642)23(12分)已知,抛物线的顶点为,它与轴交于点,(点在点左侧)()求点、点的坐标;()将这个抛物线的图象沿轴翻折,得到一个新抛物线,这个新抛物线与直线交于点求证:点是这个新抛物线与直线的唯一交点;将新抛物线位于轴上方的部分记为,将图象以每秒个单位的速度向右平移,同时也将直线以每秒个单位的速度向上平移,记运动时间为,

7、请直接写出图象与直线有公共点时运动时间的范围24(14分)如图,在平面直角坐标系中,抛物线的图象经过和两点,且与轴交于,直线是抛物线的对称轴,过点的直线与直线相交于点,且点在第一象限(1)求该抛物线的解析式;(2)若直线和直线、轴围成的三角形面积为6,求此直线的解析式;(3)点在抛物线的对称轴上,与直线和轴都相切,求点的坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题解析:.故选C.考点:分式的加减法.2、C【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个

8、不为零的数字前面的0的个数所决定【详解】35000纳米=3500010-9米=3.510-5米故选C【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3、B【解析】直接利用三角形内角和定理得出ABC的度数,再利用翻折变换的性质得出BDE的度数【详解】解:A=56,C=88,ABC=180-56-88=36,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,CBD=DBE=18,C=DEB=88,BDE=180-18-88=74故选:B【点睛】此题主要考查了三角形内角和定理,正确掌握三

9、角形内角和定理是解题关键4、A【解析】利用垂径定理的推论得出DOAB,AF=BF,进而得出DF的长和DEFCEA,再利用相似三角形的性质求出即可【详解】连接DO,交AB于点F,D是的中点,DOAB,AF=BF,AB=8,AF=BF=4,FO是ABC的中位线,ACDO,BC为直径,AB=8,AC=6,BC=10,FO=AC=1,DO=5,DF=5-1=2,ACDO,DEFCEA,=1故选:A【点睛】此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出DEFCEA是解题关键5、D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】

10、A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.6、A【解析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解【详解】在这一组数据中1是出现次数最多的,故众数是1故选:A【点睛】本题为统计题,考查众数的意义众数是一组数据中出现次数最多的数据,注意众数可以不止一个7、A【解析】试题解析:设货船的航行速度为海里/时,小时后货船在点处,作于点.由题意海里,海里,在中, 所以在中, 所以所以解得

11、:故选A.8、B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案【详解】A、是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、是无理数,故本选项错误,故选B【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键9、A【解析】根据绝对值的性质进行求解即可得.【详解】|-x|=-x,又|-x|1,-x1,即x1,即x是非正数,故选A【点睛】本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是110

12、、B【解析】分析:直接利用23,进而得出答案详解:23,3+14,故选B点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键二、填空题(共7小题,每小题3分,满分21分)11、n(m1)1【解析】先提取公因式n后,再利用完全平方公式分解即可【详解】m1n1mn+n=n(m11m+1)=n(m1)1故答案为n(m1)112、-1【解析】根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论【详解】 故答案为【点睛】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键13、6.7106【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,

13、n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:6700000用科学记数法表示应记为6.7106,故选6.7106.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为ax10n的形式,其中1|a|10,n为整数;表示时关键要正确确定a的值以及n的值.14、【解析】如图,根据正方形的性质得:DEBC,则ADEACB,列比例式可得结论.【详解】如图,四边形CDEF是正方形,CD=ED,DECF,设ED=x,则CD=x,AD=12-x,DECF,ADE=C,AED=B,ADEA

14、CB,x=,故答案为.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键15、1【解析】根据一元二次方程根与系数的关系求解即可.【详解】解:根据题意得,所以=1故答案为1【点睛】本题考查了根与系数的关系:若、是一元二次方程(a0)的两根时,16、1【解析】解:设圆锥的底面圆半径为r,根据题意得1r=,解得r=1,即圆锥的底面圆半径为1cm故答案为:1【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键17、1【解析】作CEAB于E,根据题意求出AC的长,根据正弦的定义求出CE,根据三角形的外角的性质求出B的度数,根据正弦的定义计算即可【详解】作CEAB于E

15、,1km/h30分钟=9km,AC=9km,CAB=45,CE=ACsin45=9km,灯塔B在它的南偏东15方向,NCB=75,CAB=45,B=30,BC=1km,故答案为:1【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键三、解答题(共7小题,满分69分)18、 (8+8)m【解析】利用ECA的正切值可求得AE;利用ECB的正切值可求得BE,由AB=AE+BE可得答案【详解】在RtEBC中,有BE=ECtan45=8m,在RtAEC中,有AE=ECtan30=8m,AB=8+8(m)【点睛】本题考查了解直角三角形的应用-俯角、仰角问题

16、,要求学生能借助其关系构造直角三角形并解直角三角形19、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为元,则:解得:经检验:是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为元,则:,化简得:,解得:,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.20、(1)

17、a=6, b=;(2) ;(3)或5h【解析】(1)根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,指出此时a的值即可,求得a的值后求出两车相遇时的时间即为b的值;(2)根据函数的图像可以得到A、B、C、D的点的坐标,利用待定系数法求得函数的解析式即可.(3)分两车相遇前和两车相遇后两种情况讨论,当相遇前令s=200即可求得x的值.【详解】解:(1)由s与x之间的函数的图像可知:当位于C点时,两车之间的距离增加变缓,由此可以得到a=6,快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600,;(2)从函数的图象上可以得到A、B、C、D点的

18、坐标分别为:(0,600)、(,0)、(6,360)、(10,600),设线段AB所在直线解析式为:S=kx+b, 解得:k=-160,b=600,设线段BC所在的直线的解析式为:S=kx+b, 解得:k=160,b=-600,设直线CD的解析式为:S=kx+b, 解得:k=60,b=0 (3)当两车相遇前相距200km,此时:S=-160x+600=200,解得:,当两车相遇后相距200km,此时:S=160x-600=200,解得:x=5,或5时两车相距200千米【点睛】本题考查了一次函数的综合知识,特别是本题中涉及到了分段函数的知识,解题时主要自变量的取值范围.21、【解析】对待求式的分

19、子、分母进行因式分解,并将除法化为乘法可得-1,通过约分即可得到化简结果;先利用特殊角的三角函数值求出a的值,再将a、b的值代入化简结果中计算即可解答本题.【详解】原式=-1=-1=,当a2sin60tan45=21=1,b=1时,原式=.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值运算法则.22、(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米【解析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度试题解析:(1)在大楼AB的正前方有一斜

20、坡CD,CD=13米,坡度为1:,设DE=5x米,则EC=12x米,(5x)2+(12x)2=132,解得:x=1,5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知BDH=45,BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,tan64=,2=,解得,x=29,AB=x+5=34,即大楼AB的高度是34米23、(1)B(3,0),C(1,0);(2)见解析;t6.【解析】(1)根据抛物线的顶点坐标列方程,即可求得抛物线的解析式,令y0,即可得解

21、;(2)根据翻折的性质写出翻折后的抛物线的解析式,与直线方程联立,求得交点坐标即可;当t0时,直线与抛物线只有一个交点N(3,6)(相切),此时直线与G无交点;第一个交点出现时,直线过点C(1 t,0),代入直线解析式:y4x6t,解得t;最后一个交点是B(3t,0),代入y4x6t,解得t6,所以t6.【详解】(1)因为抛物线的顶点为M(1,2),所以对称轴为x1,可得:,解得:a,c,所以抛物线解析式为yx2x,令y0,解得x1或x3,所以B(3,0),C(1,0);(2)翻折后的解析式为yx2x,与直线y4x6联立可得:x23x0,解得:x1x23,所以该一元二次方程只有一个根,所以点N

22、(3,6)是唯一的交点;t6.【点睛】本题主要考查了图形运动,解本题的要点在于熟知一元二次方程的相关知识点.24、(1);(2);(3)或【解析】(1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用待定系数法求出二次函数解析式;(2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法求出一次函数解析式;(3)利用三角形相似求出ABCPBF,即可求出圆的半径,即可得出P点的坐标【详解】(1)抛物线的图象经过,把,代入得:解得:,抛物线解析式为;(2)抛物线改写成顶点式为,抛物线对称轴为直线,对称轴与轴的交点

23、C的坐标为,设点B的坐标为,则,点B的坐标为,设直线解析式为:,把,代入得:,解得:,直线解析式为:(3)当点P在抛物线的对称轴上,P与直线AB和x轴都相切,设P与AB相切于点F,与x轴相切于点C,如图1;PFAB,AF=AC,PF=PC,AC=1+2=3,BC=4,AB=5,AF=3,BF=2,FBP=CBA,BFP=BCA=90,ABCPBF,解得:,点P的坐标为(2,);设P与AB相切于点F,与轴相切于点C,如图2:PFAB,PF=PC,AC=3,BC=4, AB=5,FBP=CBA,BFP=BCA=90,ABCPBF,解得:,点P的坐标为(2,-6),综上所述,与直线和都相切时,或【点睛】本题考查了二次函数综合题,涉及到用待定系数法求一函数的解析式、二次函数的解析式及相似三角形的判定和性质、切线的判定和性质,根据题意画出图形,利用数形结合求解是解答此题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁