《湖南省郴州市名校2023年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《湖南省郴州市名校2023年中考适应性考试数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,热气球的探测器显示,从热气球A看一
2、栋楼顶部B的仰角为30,看这栋楼底部C的俯角为60,热气球A与楼的水平距离为120米,这栋楼的高度BC为( )A160米B(60+160)C160米D360米2 (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A2BC5D3已知O的半径为13,弦ABCD,AB=24,CD=10,则四边形ACDB的面积是()A119B289C77或119D119或2894函数的图象上有两点,若,则( )ABCD、的大小不确定5长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A米 B米C米 D米6观察下列图案,是轴对称而不
3、是中心对称的是()ABCD7下列各数中,最小的数是( )A0BCD8已知x=2是关于x的一元二次方程x2x2a=0的一个解,则a的值为()A0B1C1D29下列计算结果是x5的为()Ax10x2 Bx6x Cx2x3 D(x3)210如图,是一个工件的三视图,则此工件的全面积是()A60cm2B90cm2C96cm2D120cm2二、填空题(共7小题,每小题3分,满分21分)11将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若ABE20,则DBC为_度12如图,已知O是ABD的外接圆,AB是O的直径,CD是O的弦,ABD=58,则BCD的度数是_13关于的方程有两个不相等的实数根,那
4、么的取值范围是_14如果a,b分别是2016的两个平方根,那么a+bab=_15若反比例函数y=的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_16在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成一个圆锥,则圆锥的高为_17如图,在平面直角坐标系中,经过点A的双曲线y=(x0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,AOB=OBA=45,则k的值为_三、解答题(共7小题,满分69分)18(10分)已知ABC内接于O,AD平分BAC(1)如图1,求证:;(2)如图2,当BC为直径时,作BEAD于点E,CFAD于点F,求证:DE=AF;(3)如图3,在(2
5、)的条件下,延长BE交O于点G,连接OE,若EF=2EG,AC=2,求OE的长19(5分)如图,在RtABC中,ACB90,CD 是斜边AB上的高(1)ACD与ABC相似吗?为什么?(2)AC2ABAD 成立吗?为什么?20(8分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AGDB交CB的延长线于G求证:ADECBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论21(10分)如图1,点为正的边上一点(不与点重合),点分别在边上,且.(1)求证:;(2)设,的面积为,的面积为,求(用含的式子表示);(3)如图2,若点为边的中点,
6、求证: .图1 图222(10分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知COD=OAB=90,OC=,反比例函数y=的图象经过点B求k的值把OCD沿射线OB移动,当点D落在y=图象上时,求点D经过的路径长23(12分)如图,在ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,求证:AF=DC;若ABAC,试判断四边形ADCF的形状,并证明你的结论24(14分)如图,已知抛物线y=x2+bx+c经过ABC的三个顶点,其中点A(0,1),点B(9,10),ACx轴,点P是直线AC下方抛物线上的动点(1)求抛物线
7、的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】过点A作ADBC于点D.根据三角函数关系求出BD、CD的长,进而可求出BC的长.【详解】如图所示,过点A作ADBC于点D.在RtABD中,BAD30,AD120m,BDADtan30120m; 在RtADC中,DAC60,CDADtan60120m.BC
8、BDDCm.故选C.【点睛】本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值.2、B【解析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=. 故选B【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力3、D【解析】分两种情况进行讨论:弦AB和CD在圆心同侧;弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理,然后按梯形面积
9、的求解即可.【详解】解:当弦AB和CD在圆心同侧时,如图1,AB=24cm,CD=10cm,AE=12cm,CF=5cm,OA=OC=13cm,EO=5cm,OF=12cm,EF=12-5=7cm;四边形ACDB的面积 当弦AB和CD在圆心异侧时,如图2,AB=24cm,CD=10cm,.AE=12cm,CF=5cm,OA=OC=13cm,EO=5cm,OF=12cm,EF=OF+OE=17cm.四边形ACDB的面积四边形ACDB的面积为119或289.故选:D.【点睛】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.4、A【
10、解析】根据x1、x1与对称轴的大小关系,判断y1、y1的大小关系【详解】解:y=-1x1-8x+m,此函数的对称轴为:x=-=-=-1,x1x1-1,两点都在对称轴左侧,a0,对称轴左侧y随x的增大而增大,y1y1故选A【点睛】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键5、D【解析】先将25 100用科学记数法表示为2.51104,再和10-9相乘,等于2.5110-5米故选D6、A【解析】试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、不是轴对称图形,是中心对
11、称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、是轴对称图形,也是中心对称图形,故本选项不符合题意故选A.点睛:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形这个旋转点,就叫做对称中心7、D【解析】根据实数大小比较法则判断即可【详解】01,故选D【点睛】本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键8、C【解析】试题分析:把方程的解代入方程,可以求出字母系数a的值x=2是方程的解,422a=0,a=1故本题选C【考点】一元二次方程的
12、解;一元二次方程的定义9、C【解析】解:Ax10x2=x8,不符合题意;Bx6x不能进一步计算,不符合题意;Cx2x3=x5,符合题意;D(x3)2=x6,不符合题意故选C10、C【解析】先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.【详解】圆锥的底面圆的直径为12cm,高为8cm,所以圆锥的母线长=10,所以此工件的全面积=62+2610=96(cm2).故答案选C.【点睛】本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练
13、的掌握圆锥的面积及由三视图判断几何体.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】解:根据翻折的性质可知,ABE=ABE,DBC=DBC又ABE+ABE+DBC+DBC=180,ABE+DBC=90又ABE=20,DBC=1故答案为1点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出ABE=ABE,DBC=DBC是解题的关键12、32【解析】根据直径所对的圆周角是直角得到ADB=90,求出A的度数,根据圆周角定理解答即可【详解】AB是O的直径,ADB=90,ABD=58,A=32,BCD=32,故答案为3213、且【解析】分
14、析:根据一元二次方程的定义以及根的判别式的意义可得=4-12m1且m1,求出m的取值范围即可详解:一元二次方程mx2-2x+3=1有两个不相等的实数根,1且m1,4-12m1且m1,m且m1,故答案为:m且m1点睛:本题考查了一元二次方程ax2+bx+c=1(a1,a,b,c为常数)根的判别式=b2-4ac当1,方程有两个不相等的实数根;当=1,方程有两个相等的实数根;当1,方程没有实数根也考查了一元二次方程的定义14、1【解析】先由平方根的应用得出a,b的值,进而得出a+b=0,代入即可得出结论【详解】a,b分别是1的两个平方根, a,b分别是1的两个平方根,a+b=0,ab=a(a)=a2
15、=1,a+bab=0(1)=1,故答案为:1【点睛】此题主要考查了平方根的性质和意义,解本题的关键是熟练掌握平方根的性质15、m1【解析】反比例函数的图象在其每个象限内,y随x的增大而减小,0,解得:m1,故答案为m1.16、 cm【解析】利用已知得出底面圆的半径为:1cm,周长为2cm,进而得出母线长,即可得出答案【详解】半径为1cm的圆形,底面圆的半径为:1cm,周长为2cm,扇形弧长为:2=,R=4,即母线为4cm,圆锥的高为:(cm)故答案为cm【点睛】此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键17、【解析】分析:过A作AMy轴于M,
16、过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,AMO=BNA=90,由等腰三角形的判定与性质得出OA=BA,OAB=90,证出AOM=BAN,由AAS证明AOMBAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k1),得出方程(1+k)(k1)=k,解方程即可详解:如图所示,过A作AMy轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,AMO=BNA=90,AOM+OAM=90,AOB=OBA=45,OA=BA,OAB=90,OAM+BAN=90,AOM=BAN,AOMBAN,AM=BN=1,OM=AN=k,OD=1+k,B
17、D=OMBN=k1B(1+k,k1),双曲线y=(x0)经过点B,(1+k)(k1)=k,整理得:k2k1=0,解得:k=(负值已舍去),故答案为点睛:本题考查了反比例函数图象上点的坐标特征,坐标与图形的性质,全等三角形的判定与性质,等腰三角形的判定与性质等知识.解决问题的关键是作辅助线构造全等三角形.【详解】请在此输入详解!三、解答题(共7小题,满分69分)18、(1)证明见解析;(1)证明见解析;(3)1.【解析】(1)连接OB、OC、OD,根据圆心角与圆周角的性质得BOD=1BAD,COD=1CAD,又AD平分BAC,得BOD=COD,再根据圆周角相等所对的弧相等得出结论.(1)过点O作
18、OMAD于点M,又一组角相等,再根据平行线的性质得出对应边成比例,进而得出结论;(3)延长EO交AB于点H,连接CG,连接OA,BC为O直径,则G=CFE=FEG=90,四边形CFEG是矩形,得EG=CF,又AD平分BAC,再根据邻补角与余角的性质可得BAF=ABE,ACF=CAF,AE=BE,AF=CF,再根据直角三角形的三角函数计算出边的长,根据“角角边”证明出HBOABC,根据相似三角形的性质得出对应边成比例,进而得出结论.【详解】(1)如图1,连接OB、OC、OD,BAD和BOD是所对的圆周角和圆心角,CAD和COD是所对的圆周角和圆心角,BOD=1BAD,COD=1CAD,AD平分B
19、AC,BAD=CAD,BOD=COD,=;(1)如图1,过点O作OMAD于点M,OMA=90,AM=DM,BEAD于点E,CFAD于点F,CFM=90,MEB=90,OMA=MEB,CFM=OMA,OMBE,OMCF,BEOMCF,OB=OC,=1,FM=EM,AMFM=DMEM,DE=AF;(3)延长EO交AB于点H,连接CG,连接OABC为O直径,BAC=90,G=90,G=CFE=FEG=90,四边形CFEG是矩形,EG=CF,AD平分BAC,BAF=CAF=90=45,ABE=180BAFAEB=45,ACF=180CAFAFC=45,BAF=ABE,ACF=CAF,AE=BE,AF=
20、CF,在RtACF中,AFC=90,sinCAF=,即sin45=,CF=1=,EG=,EF=1EG=1,AE=3,在RtAEB中,AEB=90,AB=6,AE=BE,OA=OB,EH垂直平分AB,BH=EH=3,OHB=BAC,ABC=ABCHBOABC,OH=1,OE=EHOH=31=1【点睛】本题考查了相似三角形的判定与性质和圆的相关知识点,解题的关键是熟练的掌握相似三角形的判定与性质和圆的相关知识点.19、(1)ACD 与ABC相似;(2)AC2ABAD成立.【解析】(1)求出ADCACB90,根据相似三角形的判定推出即可;(2)根据相似三角形的性质得出比例式,再进行变形即可【详解】解
21、:(1)ACD 与ABC相似,理由是:在 RtABC 中,ACB90,CD 是斜边AB上的高,ADCACB90,AA,ACDABC;(2)AC2ABAD成立,理由是:ACDABC,AC2ABAD【点睛】本题考查了相似三角形的性质和判定,能根据相似三角形的判定定理推出ACDABC 是解此题的关键20、(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;【解析】(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出2+3=90即ADB=90,所以判定四边形AGBD
22、是矩形【详解】解:证明:四边形是平行四边形,点、分别是、的中点,在和中,解:当四边形是菱形时,四边形是矩形证明:四边形是平行四边形,四边形是平行四边形四边形是菱形,即四边形是矩形【点睛】本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定平行四边形基本性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分三角形全等的判定条件:SSS,SAS,AAS,ASA21、(1)详见解析;(1)详见解析;(3)详见解析.【解析】(1)根据两角对应相等的两个三角形相似即可判断;(1)如图1中,分别过E,F作EGBC于G,FHBC于
23、H,S1=BDEG=BDEG=aBEsin60=aBE,S1=CDFH=bCF,可得S1S1=abBECF,由(1)得BDECFD,即BEFC=BDCD=ab,即可推出S1S1=a1b1;(3)想办法证明DFECFD,推出,即DF1=EFFC;【详解】(1)证明:如图1中,在BDE中,BDE+DEB+B=180,又BDE+EDF+FDC=180,BDE+DEB+B=BDE+EDF+FDC,EDF=B,DEB=FDC,又B=C,BDECFD(1)如图1中,分别过E,F作EGBC于G,FHBC于H,S1=BDEG=BDEG=aBEsin60=aBE,S1=CDFH=bCF,S1S1=abBECF由
24、(1)得BDECFD,即BEFC=BDCD=ab,S1S1=a1b1(3)由(1)得BDECFD,又BD=CD,又EDF=C=60,DFECFD,即DF1=EFFC【点睛】本题考查了相似形综合题、等边三角形的性质、相似三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找相似三角形的相似的条件.22、(1)k=2;(2)点D经过的路径长为【解析】(1)根据题意求得点B的坐标,再代入求得k值即可;(2)设平移后与反比例函数图象的交点为D,由平移性质可知DDOB,过D作DEx轴于点E,交DC于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(1,1),设D横坐标为t,则OE=
25、MF=t,即可得D(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD的长,即可得点D经过的路径长【详解】(1)AOB和COD为全等三的等腰直角三角形,OC=,AB=OA=OC=OD=,点B坐标为(,),代入得k=2;(2)设平移后与反比例函数图象的交点为D,由平移性质可知DDOB,过D作DEx轴于点E,交DC于点F,设CD交y轴于点M,如图, OC=OD=,AOB=COM=45,OM=MC=MD=1,D坐标为(1,1),设D横坐标为t,则OE=MF=t,DF=DF=t+1,DE=DF+EF=t+2,D(t,t+2),D在反比例函数图象上,t(t+2)=2,解得t=或
26、t=1(舍去),D(1, +1),DD=,即点D经过的路径长为【点睛】本题是反比例函数与几何的综合题,求得点D的坐标是解决第(2)问的关键23、(1)见解析(2)见解析【解析】(1)根据AAS证AFEDBE,推出AF=BD,即可得出答案(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可【详解】解:(1)证明:AFBC, AFE=DBEE是AD的中点,AD是BC边上的中线,AE=DE,BD=CD在AFE和DBE中,AFE=DBE,FEA=BED, AE=DE,AFEDBE(AAS)AF=BDAF=DC(2)四边形ADCF是菱形,证明如下:AF
27、BC,AF=DC,四边形ADCF是平行四边形ACAB,AD是斜边BC的中线,AD=DC平行四边形ADCF是菱形24、 (1) 抛物线的解析式为y=x2-2x+1,(2) 四边形AECP的面积的最大值是,点P(,);(3) Q(4,1)或(-3,1).【解析】(1)把点A,B的坐标代入抛物线的解析式中,求b,c;(2)设P(m,m22m1),根据S四边形AECPSAECSAPC,把S四边形AECP用含m式子表示,根据二次函数的性质求解;(3)设Q(t,1),分别求出点A,B,C,P的坐标,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判断出BACPCA45,则要分两种情况讨论,根据相似三角
28、形的对应边成比例求t.【详解】解:(1)将A(0,1),B(9,10)代入函数解析式得:819bc10,c1,解得b2,c1,所以抛物线的解析式yx22x1;(2)ACx轴,A(0,1),x22x11,解得x16,x20(舍),即C点坐标为(6,1),点A(0,1),点B(9,10),直线AB的解析式为yx1,设P(m,m22m1),E(m,m1),PEm1(m22m1)m23m.ACPE,AC6,S四边形AECPSAECSAPCACEFACPFAC(EFPF)ACEP6(m23m)m29m.0m6,当m时,四边形AECP的面积最大值是,此时P();(3)yx22x1(x3)22,P(3,2)
29、,PFyFyp3,CFxFxC3,PFCF,PCF45,同理可得EAF45,PCFEAF,在直线AC上存在满足条件的点Q,设Q(t,1)且AB,AC6,CP,以C,P,Q为顶点的三角形与ABC相似,当CPQABC时,CQ:ACCP:AB,(6t):6,解得t4,所以Q(4,1);当CQPABC时,CQ:ABCP:AC,(6t)6,解得t3,所以Q(3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与ABC相似,Q点的坐标为(4,1)或(3,1).【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,平行于坐标轴的直线上两点间的距离是较大的坐标减较小的坐标;解(3)的关键是利用相似三角形的性质的出关于CQ的比例,要分类讨论,以防遗漏