陕西省西安市碑林区西北工业大附属中学2022-2023学年中考一模数学试题含解析.doc

上传人:茅**** 文档编号:88314650 上传时间:2023-04-25 格式:DOC 页数:18 大小:814.50KB
返回 下载 相关 举报
陕西省西安市碑林区西北工业大附属中学2022-2023学年中考一模数学试题含解析.doc_第1页
第1页 / 共18页
陕西省西安市碑林区西北工业大附属中学2022-2023学年中考一模数学试题含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《陕西省西安市碑林区西北工业大附属中学2022-2023学年中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《陕西省西安市碑林区西北工业大附属中学2022-2023学年中考一模数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1已知点A(1,y1)、B(2,y2)、C(3,y3)都在反比例函数y的图象上,则y1、y2、y3的大小关系是( )Ay1y2y3By3y2y1Cy2y1y3Dy3y1y22已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A8.23106B8.23107C

2、8.23106D8.231073如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()A主视图是中心对称图形B左视图是中心对称图形C主视图既是中心对称图形又是轴对称图形D俯视图既是中心对称图形又是轴对称图形4已知数a、b、c在数轴上的位置如图所示,化简|a+b|cb|的结果是()Aa+bBacCa+cDa+2bc5一次函数与二次函数在同一平面直角坐标系中的图像可能是( )ABCD6在0.3,3,0,这四个数中,最大的是()A0.3B3C0D7一、单选题点P(2,1)关于原点对称的点P的坐标是()A(2,1)B(2,1)C(1,2)D(1,2)8在RtABC中,C=90,AC=1,

3、BC=3,则A的正切值为()A3BCD9的相反数是()ABCD10下列命题是真命题的是( )A过一点有且只有一条直线与已知直线平行B对角线相等且互相垂直的四边形是正方形C平分弦的直径垂直于弦,并且平分弦所对的弧D若三角形的三边a,b,c满足a2b2c2acbcab,则该三角形是正三角形二、填空题(本大题共6个小题,每小题3分,共18分)11计算a3a2a的结果等于_12点A(a,b)与点B(3,4)关于y轴对称,则a+b的值为_13如图,在55的正方形(每个小正方形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接_. (写出一个答

4、案即可)14分式方程的解是_15如图,在ABC中,AB=AC=2,BC=1点E为BC边上一动点,连接AE,作AEF=B,EF与ABC的外角ACD的平分线交于点F当EFAC时,EF的长为_16求1+2+22+23+22007的值,可令s=1+2+22+23+22007,则2s=2+22+23+24+22018,因此2ss=220181,即s=220181,仿照以上推理,计算出1+3+32+33+32018的值为_三、解答题(共8题,共72分)17(8分)在ABC中,ACB45点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF(1)如果ABAC如图,且

5、点D在线段BC上运动试判断线段CF与BD之间的位置关系,并证明你的结论(2)如果ABAC,如图,且点D在线段BC上运动(1)中结论是否成立,为什么?(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC4,BC3,CDx,求线段CP的长(用含x的式子表示)18(8分)矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA求证:OCPPDA;若OCP与PDA的面积比为1:4,求边AB的长(2)如图2,在(1)的条件下,擦去AO和OP,连接BP动点M在线段AP上(不与点P、A重合),动点N在线段A

6、B的延长线上,且BN=PM,连接MN交PB于点F,作MEBP于点E试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由19(8分)如图,以40m/s的速度将小球沿与地面成30角的方向击出时,小球的飞行路线是一条抛物线如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h10t5t1小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t在什么范围时,飞行高度不低于15m?20(8分)关于x的一元二次方程x2(2m3)x+m2+1=1(1)若m是方程的一个实数根,求m的值;(2)若m为负数,判断方程根的情

7、况21(8分)已知,平面直角坐标系中的点A(a,1),taba2b2(a,b是实数)(1)若关于x的反比例函数y过点A,求t的取值范围(2)若关于x的一次函数ybx过点A,求t的取值范围(3)若关于x的二次函数yx2+bx+b2过点A,求t的取值范围22(10分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将ABC绕C点按顺时针方向旋转90得到A1B1C(1)画出A1B1C;(2)A的对应点为A1,写出点A1的坐标;(3)求出B旋转到B1的路线长23(12分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动

8、,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60方向行驶至B地,再沿北偏西37方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53,cos53,tan53)24在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DFDE,交OA于点F,连结EF已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒如图1,当t=3时,求DF的长如图2,当点E在线段AB上移动的过程中,DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求

9、出tanDEF的值连结AD,当AD将DEF分成的两部分的面积之比为1:2时,求相应的t的值参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可【详解】点A(1,y1),B(2,y2),C(3,y3)都在反比例函数y=的图象上,y1=6,y2=3,y3=-2,236,y3y2y1,故选B【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.2、B【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n

10、,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定详解:0.000000823=8.2310-1故选B点睛:本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3、D【解析】先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可【详解】解:A、主视图不是中心对称图形,故A错误;B、左视图不是中心对称图形,故B错误;C、主视图不是中心对称图形,是轴对称图形,故C错误;D、俯视图既是中心对称图形又是轴对称图形,故D正确故选:D【点睛】本题考查简单几何体的三视

11、图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键4、C【解析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可【详解】解:通过数轴得到a0,c0,b0,|a|b|c|,a+b0,cb0|a+b|cb|=a+bb+c=a+c,故答案为a+c故选A5、D【解析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致【详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a0,由直线可知,a0,a的

12、取值矛盾,故本选项错误;C、由抛物线可知,a0,由直线可知,a0,a的取值矛盾,故本选项错误;D、由抛物线可知,a0,由直线可知,a0,且抛物线与直线与y轴的交点相同,故本选项正确故选D【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法6、A【解析】根据正数大于0,0大于负数,正数大于负数,比较即可【详解】-3-00.3最大为0.3故选A【点睛】本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型7、A【解析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答【详解】解:点P(2,-1)关于原点对称的点的坐标是(-

13、2,1)故选A【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数8、A【解析】【分析】根据锐角三角函数的定义求出即可【详解】在RtABC中,C=90,AC=1,BC=3,A的正切值为=3,故选A【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键9、B【解析】一个数的相反数就是在这个数前面添上“”号,由此即可求解【详解】解:的相反数是故选:B【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“”号:一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是110、D【解析

14、】根据真假命题的定义及有关性质逐项判断即可.【详解】A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D、a2b2c2acbcab,2a22b22c2-2ac-2bc-2ab=0,(a-b)2+(a-c)2+(b-c)2=0,a=b=c,故本选项正确.故选D.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能

15、保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、a1【解析】根据同底数幂的除法法则和同底数幂乘法法则进行计算即可【详解】解:原式=a31+1=a1故答案为a1【点睛】本题考查了同底数幂的乘除法,关键是掌握计算法则12、1【解析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可【详解】解:点与点 关于y轴对称, 故答案为1【点睛】考查关于轴对称的点的坐标特征,纵坐标不变,横坐标互为相反数13、答案不唯一,如:AD【解析】根据勾股定理求出,根据无理数的估算方法解答即可【详解】由勾股定理得:,故答案为答

16、案不唯一,如:AD【点睛】本题考查了无理数的估算和勾股定理,如果直角三角形的两条直角边长分别是,斜边长为,那么14、x=13【解析】解分式方程的步骤:去分母;求出整式方程的解;检验;得出结论【详解】,去分母,可得x5=8,解得x=13,经检验:x=13是原方程的解【点睛】本题主要考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应检验15、1+【解析】当AB=AC,AEF=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,即可得到AEBC,依据RtCFGRtCFH,可得CH=CG=,再根据勾股定理即可得到EF的长【详解】解:如图,当

17、AB=AC,AEF=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,AEBC,CE=BC=2,又AC=2,AE=1,EG=,CG=,作FHCD于H,CF平分ACD,FG=FH,而CF=CF,RtCFGRtCFH,CH=CG=,设EF=x,则HF=GF=x-,RtEFH中,EH2+FH2=EF2,(2+)2+(x-)2=x2,解得x=1+,故答案为1+【点睛】本题主要考查了角平分线的性质,勾股定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合16、 【解析】仿照已知方法求出所求即可【详解】令S=1+3+32+33

18、+32018,则3S=3+32+33+32019,因此3SS=320191,即S=故答案为:【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键三、解答题(共8题,共72分)17、(1)CF与BD位置关系是垂直,理由见解析;(2)ABAC时,CFBD的结论成立,理由见解析;(3)见解析【解析】(1)由ACB=15,AB=AC,得ABD=ACB=15;可得BAC=90,由正方形ADEF,可得DAF=90,AD=AF,DAF=DAC+CAF;BAC=BAD+DAC;得CAF=BAD可证DABFAC(SAS),得ACF=ABD=15,得BCF=ACB+ACF=90即CFBD(2)过点

19、A作AGAC交BC于点G,可得出AC=AG,易证:GADCAF,所以ACF=AGD=15,BCF=ACB+ACF=90即CFBD(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=1 ,BC=3,CD=x,求线段CP的长考虑点D的位置,分两种情况去解答点D在线段BC上运动,已知BCA=15,可求出AQ=CQ=1即DQ=1-x,易证AQDDCP,再根据相似三角形的性质求解问题点D在线段BC延长线上运动时,由BCA=15,可求出AQ=CQ=1,则DQ=1+x过A作AQBC交CB延长线于点Q,则AGDACF,得CFBD,由AQDDCP,得再根据相似三角形的性质求解问题【详解】

20、(1)CF与BD位置关系是垂直;证明如下:AB=AC,ACB=15,ABC=15由正方形ADEF得AD=AF,DAF=BAC=90,DAB=FAC,DABFAC(SAS),ACF=ABDBCF=ACB+ACF=90即CFBD(2)ABAC时,CFBD的结论成立理由是:过点A作GAAC交BC于点G,ACB=15,AGD=15,AC=AG,同理可证:GADCAFACF=AGD=15,BCF=ACB+ACF=90,即CFBD(3)过点A作AQBC交CB的延长线于点Q,点D在线段BC上运动时,BCA=15,可求出AQ=CQ=1DQ=1x,AQDDCP,点D在线段BC延长线上运动时,BCA=15,AQ=

21、CQ=1,DQ=1+x过A作AQBC,Q=FAD=90,CAF=CCD=90,ACF=CCD,ADQ=AFC,则AQDACFCFBD,AQDDCP,【点睛】综合性题型,解题关键是灵活运用所学全等、相似、正方形等知识点.18、(1)证明见解析;10;(2)线段EF的长度不变,它的长度为2. 【解析】试题分析:(1)先证出C=D=90,再根据1+3=90,1+2=90,得出2=3,即可证出OCPPDA;根据OCP与PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8x,由勾股定理得列方程,求出x,最后根据CD=AB=2OP即可求出边CD的长;(2)作MQAN,交PB于点Q,求出MP=

22、MQ,BN=QM,得出MP=MQ,根据MEPQ,得出EQ=PQ,根据QMF=BNF,证出MFQNFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB的长,最后代入EF=PB即可得出线段EF的长度不变试题解析:(1)如图1,四边形ABCD是矩形,C=D=90,1+3=90,由折叠可得APO=B=90,1+2=90,2=3,又D=C,OCPPDA;OCP与PDA的面积比为1:4,=,CP=AD=4,设OP=x,则CO=8x,在RtPCO中,C=90,由勾股定理得 :,解得:x=5,CD=AB=AP=2OP=10,边CD的长为10;(2)作MQAN,交PB于点Q,如图2,AP=AB,MQ

23、AN,APB=ABP=MQP,MP=MQ,BN=PM,BN=QMMP=MQ,MEPQ,EQ=PQMQAN,QMF=BNF,在MFQ和NFB中,QFM=NFB,QMF=BNF,MQ=BN,MFQNFB(AAS),QF=QB,EF=EQ+QF=PQ+QB=PB,由(1)中的结论可得:PC=4,BC=8,C=90,PB=,EF=PB=,在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为考点:翻折变换(折叠问题);矩形的性质;相似形综合题19、(1)小球飞行时间是1s时,小球最高为10m;(1) 1t3.【解析】(1)将函数解析式配方成顶点式可得最值;(1)画图象可得t的取值【详

24、解】(1)h5t1+10t5(t1)1+10,当t1时,h取得最大值10米;答:小球飞行时间是1s时,小球最高为10m;(1)如图,由题意得:1510t5t1,解得:t11,t13,由图象得:当1t3时,h15,则小球飞行时间1t3时,飞行高度不低于15m【点睛】本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键20、 (1) ; (2)方程有两个不相等的实根.【解析】分析:(1)由方程根的定义,代入可得到关于m的方程,则可求得m的值;(2)计算方程根的判别式,判断判别式的符号即可详解:(1)m是方程的一个实数根,m2-(

25、2m-3)m+m2+1=1,m;(2)=b2-4ac=-12m+5,m1,-12m1=-12m+51此方程有两个不相等的实数根点睛:考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键21、(1)t;(2)t3;(3)t1【解析】(1)把点A的坐标代入反比例函数解析式求得a的值;然后利用二次函数的最值的求法得到t的取值范围(2)把点A的坐标代入一次函数解析式求得a=;然后利用二次函数的最值的求法得到t的取值范围(3)把点A的坐标代入二次函数解析式求得以a2+b2=1-ab;然后利用非负数的性质得到t的取值范围【详解】解:(1)把A(a,1)代入y得到:1,解得a1,则ta

26、ba2b2b1b2(b)2因为抛物线t(b)2的开口方向向下,且顶点坐标是(,),所以t的取值范围为:t;(2)把A(a,1)代入ybx得到:1ab,所以a,则taba2b2(a2+b2)+1(b+)2+33,故t的取值范围为:t3;(3)把A(a,1)代入yx2+bx+b2得到:1a2+ab+b2,所以ab1(a2+b2),则taba2b212(a2+b2)1,故t的取值范围为:t1【点睛】本题考查了反比例函数、一次函数以及二次函数的性质代入求值时,注意配方法的应用22、(1)画图见解析;(2)A1(0,6);(3)弧BB1=【解析】(1)根据旋转图形的性质首先得出各点旋转后的点的位置,然后

27、顺次连接各点得出图形;(2)根据图形得出点的坐标;(3)根据弧长的计算公式求出答案【详解】解:(1)A1B1C如图所示(2)A1(0,6)(3) 【点睛】本题考查了旋转作图和弧长的计算.23、(20-5)千米. 【解析】分析:作BDAC,设AD=x,在RtABD中求得BD=x,在RtBCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案详解:过点B作BD AC,依题可得:BAD=60,CBE=37,AC=13(千米),BDAC,ABD=30,CBD=53,在RtABD中,设AD=x,tanABD= 即tan30=,BD=x,在RtDCB中,tanCBD=

28、 即tan53=,CD= CD+AD=AC,x+=13,解得,x= BD=12-,在RtBDC中,cosCBD=tan60=,即:BC=(千米),故B、C两地的距离为(20-5)千米. 点睛:此题考查了方向角问题此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解24、(1)3;(2)DEF的大小不变,tanDEF=;(3)或【解析】(1)当t=3时,点E为AB的中点,A(8,0),C(0,6),OA=8,OC=6,点D为OB的中点,DEOA,DE=OA=4,四边形OABC是矩形,OAAB,DEAB,OAB=DEA=90,又DFDE,EDF=90,四边形DF

29、AE是矩形,DF=AE=3;(2)DEF的大小不变;理由如下:作DMOA于M,DNAB于N,如图2所示:四边形OABC是矩形,OAAB,四边形DMAN是矩形,MDN=90,DMAB,DNOA,, ,点D为OB的中点,M、N分别是OA、AB的中点,DM=AB=3,DN=OA=4,EDF=90,FDM=EDN,又DMF=DNE=90,DMFDNE,EDF=90,tanDEF=;(3)作DMOA于M,DNAB于N,若AD将DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;当点E到达中点之前时,如图3所示,NE=3t,由DMFDNE得:MF=(3t),AF=4+MF=t+,点G为EF的三等分点,G(,),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得: ,解得: ,直线AD的解析式为y=x+6,把G(,)代入得:t=;当点E越过中点之后,如图4所示,NE=t3,由DMFDNE得:MF=(t3),AF=4MF=t+,点G为EF的三等分点,G(,),代入直线AD的解析式y=x+6得:t=;综上所述,当AD将DEF分成的两部分的面积之比为1:2时,t的值为或.考点:四边形综合题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁