陕西省实验中学2023年高考仿真模拟数学试卷含解析.doc

上传人:茅**** 文档编号:88314637 上传时间:2023-04-25 格式:DOC 页数:19 大小:2.02MB
返回 下载 相关 举报
陕西省实验中学2023年高考仿真模拟数学试卷含解析.doc_第1页
第1页 / 共19页
陕西省实验中学2023年高考仿真模拟数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《陕西省实验中学2023年高考仿真模拟数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省实验中学2023年高考仿真模拟数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若不等式对于一切恒成立,则的最小值是 ( )A0BCD2已知集合,若,则( )A或B或C或D或3若函数在时取得最小值,则( )ABCD4设,点,设对一切都有不等式 成立,则正整数的最小值为( )ABCD5在正方体中,分别为,的中点,则异面直线,所成角

2、的余弦值为( )ABCD6已知全集,集合,则( )ABCD7已知定义在上的可导函数满足,若是奇函数,则不等式的解集是( )ABCD81777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为( )ABCD9已知集合,则的子集共有( )A个B个C个D个10已知,则的值构成的集合是( )ABCD11过椭圆的左焦点的直线过

3、的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为( )ABCD12若x,y满足约束条件则z=的取值范围为( )AB,3C,2D,2二、填空题:本题共4小题,每小题5分,共20分。13如图,在ABC中,E为边AC上一点,且,P为BE上一点,且满足,则的最小值为_14在ABC中,a3,B2A,则cosA_15西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个

4、数能构成勾股数的概率为_16满足线性的约束条件的目标函数的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图, 在四棱锥中, 底面是矩形, 四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.18(12分)在直角坐标系中,点的坐标为,直线的参数方程为(为参数,为常数,且).以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系,圆的极坐标方程为.设点在圆外.(1)求的取值范围.(2)设直线与圆相交于两点,若,求的值.19(12分)如图为某大江的一段支流,岸线与近似满足,宽度为圆为江中的一个半径为的小岛,小镇位于岸线上

5、,且满足岸线,现计划建造一条自小镇经小岛至对岸的水上通道(图中粗线部分折线段,在右侧),为保护小岛,段设计成与圆相切设 (1)试将通道的长表示成的函数,并指出定义域;(2)若建造通道的费用是每公里100万元,则建造此通道最少需要多少万元?20(12分)如图,在四棱锥中,和均为边长为的等边三角形.(1)求证:平面平面;(2)求二面角的余弦值.21(12分)在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为(为参数),直线经过点且倾斜角为.(1)求曲线的极坐标方程和直线的参数方程;(2)已知直线与曲线交于,满足为的中点,求.22(10分)在新中国成立70周年国庆阅兵庆典

6、中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.(1)当时,求M点的极坐标;(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论解:不等式x2+ax+10对一

7、切x(0,成立,等价于a-x-对于一切成立,y=-x-在区间上是增函数a-a的最小值为-故答案为C考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题2、B【解析】因为,所以,所以或.若,则,满足.若,解得或.若,则,满足.若,显然不成立,综上或,选B.3、D【解析】利用辅助角公式化简的解析式,再根据正弦函数的最值,求得在函数取得最小值时的值【详解】解:,其中,故当,即时,函数取最小值,所以,故选:D【点睛】本题主要考查辅助角公式,正弦函数的最值的应用,属于基础题4、A【解析】先求得,再求得左边的范围,只需,利用单调性解得

8、t的范围.【详解】由题意知sin,随n的增大而增大,,,即,又f(t)=在t上单增,f(2)= -10,正整数的最小值为3.【点睛】本题考查了数列的通项及求和问题,考查了数列的单调性及不等式的解法,考查了转化思想,属于中档题.5、D【解析】连接,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,取的中点为,连接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【详解】连接,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,则,在等腰中,取的中点为,连接,则,所以,即:,所以异面直线,所成角的余弦值为.故选:D.【点睛】本题考查空间异面直线的夹角余弦值,利用

9、了正方体的性质和二倍角公式,还考查空间思维和计算能力.6、D【解析】根据函数定义域的求解方法可分别求得集合,由补集和交集定义可求得结果.【详解】,.故选:.【点睛】本题考查集合运算中的补集和交集运算问题,涉及到函数定义域的求解,属于基础题.7、A【解析】构造函数,根据已知条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集.【详解】构造函数,依题意可知,所以在上递增.由于是奇函数,所以当时,所以,所以.由得,所以,故不等式的解集为.故选:A【点睛】本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题.8、D【解析】根据统

10、计数据,求出频率,用以估计概率.【详解】.故选:D.【点睛】本题以数学文化为背景,考查利用频率估计概率,属于基础题.9、B【解析】根据集合中的元素,可得集合,然后根据交集的概念,可得,最后根据子集的概念,利用计算,可得结果.【详解】由题可知:,当时,当时,当时,当时,所以集合则所以的子集共有故选:B【点睛】本题考查集合的运算以及集合子集个数的计算,当集合中有元素时,集合子集的个数为,真子集个数为,非空子集为,非空真子集为,属基础题.10、C【解析】对分奇数、偶数进行讨论,利用诱导公式化简可得.【详解】为偶数时,;为奇数时,则的值构成的集合为.【点睛】本题考查三角式的化简,诱导公式,分类讨论,属

11、于基本题.11、D【解析】求得点的坐标,由,得出,利用向量的坐标运算得出点的坐标,代入椭圆的方程,可得出关于、的齐次等式,进而可求得椭圆的离心率.【详解】由题意可得、.由,得,则,即.而,所以,所以点.因为点在椭圆上,则,整理可得,所以,所以.即椭圆的离心率为故选:D.【点睛】本题考查椭圆离心率的求解,解答的关键就是要得出、的齐次等式,充分利用点在椭圆上这一条件,围绕求点的坐标来求解,考查计算能力,属于中等题.12、D【解析】由题意作出可行域,转化目标函数为连接点和可行域内的点的直线斜率的倒数,数形结合即可得解.【详解】由题意作出可行域,如图,目标函数可表示连接点和可行域内的点的直线斜率的倒数

12、,由图可知,直线的斜率最小,直线的斜率最大,由可得,由可得,所以,所以.故选:D.【点睛】本题考查了非线性规划的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:根据题意有,因为三点共线,所以有,从而有,所以的最小值是考点:向量的运算,基本不等式【方法点睛】该题考查的是有关应用基本不等式求最值的问题,属于中档题目,在解题的过程中,关键步骤在于对题中条件的转化,根据三点共线,结合向量的性质可知,从而等价于已知两个正数的整式形式和为定值,求分式形式和的最值的问题,两式乘积,最后应用基本不等式求得结果,最后再加,得出最后的答案14、【解析】由已知利用正弦定理,

13、二倍角的正弦函数公式即可计算求值得解【详解】解:a3,B2A,由正弦定理可得:,cosA故答案为【点睛】本题主要考查了正弦定理,二倍角的正弦函数公式在解三角形中的应用,属于基础题15、【解析】由组合数结合古典概型求解即可【详解】从11个数中随机抽取3个数有种不同的方法,其中能构成勾股数的有共三种,所以,所求概率为.故答案为【点睛】本题考查古典概型与数学文化,考查组合问题,数据处理能力和应用意识.16、1【解析】作出不等式组表示的平面区域,将直线进行平移,利用的几何意义,可求出目标函数的最大值。【详解】由,得,作出可行域,如图所示:平移直线,由图像知,当直线经过点时,截距最小,此时取得最大值。由

14、 ,解得 ,代入直线,得。【点睛】本题主要考查简单的线性规划问题的解法平移法。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】证明:(1)在矩形中,又平面,平面,所以平面 (2)连结,交于点,连结,在矩形中,点为的中点,又,故, 又,平面,所以平面, 又平面,所以平面平面18、(1)(2)【解析】(1)首先将曲线化为直角坐标方程,由点在圆外,则解得即可;(2)将直线的参数方程代入圆的普通方程,设、对应的参数分别为,列出韦达定理,由及在圆的上方,得,即即可解得;【详解】解:(1)曲线的直角坐标方程为.由点在圆外,得点的坐标为,结合,

15、解得.故的取值范围是.(2)由直线的参数方程,得直线过点,倾斜角为,将直线的参数方程代入,并整理得,其中.设、对应的参数分别为,则,.由及在圆的上方,得,即,代入,得,消去,得,结合,解得.故的值是.【点睛】本题考查极坐标方程化为直角坐标方程,直线的参数方程的几何意义的应用,属于中档题.19、(1),定义域是(2)百万【解析】(1)以为原点,直线为轴建立如图所示的直角坐标系,设,利用直线与圆相切得到,再代入这一关系中,即可得答案;(2)利用导数求函数的最小值,即可得答案;【详解】以为原点,直线为轴建立如图所示的直角坐标系 设,则,因为,所以直线的方程为,即,因为圆与相切,所以,即,从而得,在直

16、线的方程中,令,得,所以,所以当时,设锐角满足,则,所以关于的函数是,定义域是(2)要使建造此通道费用最少,只要通道的长度即最小令,得,设锐角,满足,得列表:0减极小值增所以时,所以建造此通道的最少费用至少为百万元【点睛】本题考查三角函数模型的实际应用、利用导数求函数的最小值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.20、 (1)见证明;(2) 【解析】(1) 取的中点,连接,要证平面平面,转证平面,即证, 即可;(2) 以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,分别求出平面与平面的法向量,代入公式,即可得到结果.【详解】(1)取的中点,连接,因为均

17、为边长为的等边三角形,所以,且因为,所以,所以,又因为,平面,平面,所以平面.又因为平面,所以平面平面.(2)因为,为等边三角形,所以,又因为,所以,在中,由正弦定理,得:,所以.以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,则,设平面的法向量为,则,即,令,则平面的一个法向量为,依题意,平面的一个法向量所以故二面角的余弦值为.【点睛】空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定

18、理结论求出相应的角和距离.21、(1),;(2).【解析】(1)由曲线的参数方程消去参数可得曲线的普通方程,由此可求曲线的极坐标方程;直接利用直线的倾斜角以及经过的点求出直线的参数方程即可;(2)将直线的参数方程,代入曲线的普通方程,整理得,利用韦达定理,根据为的中点,解出即可.【详解】(1)由(为参数)消去参数,可得,即,已知曲线的普通方程为,即,曲线的极坐标方程为,直线经过点,且倾斜角为,直线的参数方程:(为参数,).(2)设对应的参数分别为,.将直线的参数方程代入并整理,得,.又为的中点,即,即,.【点睛】本题考查了圆的参数方程与极坐标方程之间的互化以及直线参数方程的应用,考查了计算能力,属于中档题.22、(1)点M的极坐标为或(2)【解析】(1)令,由此求得的值,进而求得点的极坐标.(2)设出两点的极坐标,利用勾股定理求得的表达式,利用三角函数最值的求法,求得的最大值.【详解】(1)设点M在极坐标系中的坐标,由,得,或,所以点M的极坐标为或(2)由题意可设,.由,得,.故时,的最大值为.【点睛】本小题主要考查极坐标的求法,考查极坐标下两点间距离的计算以及距离最值的求法,属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁