浙江省绍兴市柯桥区杨汛桥镇中学2023年中考押题数学预测卷含解析.doc

上传人:lil****205 文档编号:88314377 上传时间:2023-04-25 格式:DOC 页数:18 大小:895.50KB
返回 下载 相关 举报
浙江省绍兴市柯桥区杨汛桥镇中学2023年中考押题数学预测卷含解析.doc_第1页
第1页 / 共18页
浙江省绍兴市柯桥区杨汛桥镇中学2023年中考押题数学预测卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《浙江省绍兴市柯桥区杨汛桥镇中学2023年中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省绍兴市柯桥区杨汛桥镇中学2023年中考押题数学预测卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知抛物线y=ax2+bx+c(a1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:抛物线过原点;ab+c1;当x1时,y随x增大而增大;抛物线的顶点坐标为(2,b);若ax2+bx+c=b,则b24ac=1其中正确的是()ABCD2点A(a,3)与点

2、B(4,b)关于y轴对称,则(a+b)2017的值为()A0B1C1D720173方程组的解x、y满足不等式2xy1,则a的取值范围为()AaBaCaDa4下列运算正确的是()A3a+a=4aB3x22x=6x2C4a25a2=a2D(2x3)22x2=2x45如图是某个几何体的三视图,该几何体是( )A圆锥B四棱锥C圆柱D四棱柱6下列各组数中,互为相反数的是()A1与(1)2B(1)2与1C2与D2与|2|72017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3

3、122亿元,比上年增长6.2%数据3122亿元用科学记数法表示为()A312210 8元B3.12210 3元C312210 11 元D3.12210 11 元8如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么AOB的度数是()A90B60C45D309小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25 ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克若设早上葡萄的价格是 x 元/千克,则可列方程( )ABCD10下列运算正确

4、的是()A2a2+3a2=5a4B()2=4C(a+b)(ab)=a2b2D8ab4ab=2ab二、填空题(共7小题,每小题3分,满分21分)11如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,APO30先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30得到线段PC,连接BC若点A的坐标为(1,0),则线段BC的长为_12若a是方程的根,则=_.13若am=5,an=6,则am+n=_14化简;(1)=_15如图,抛物线交轴于,两点,交轴于点,点关于抛物线的对称轴的对称点为,点,分别在轴和轴上,则四边形周长的最小值为_16若一个反比例函数的图象经过点A(m,m)和

5、B(2m,1),则这个反比例函数的表达式为_17如图,在ABCD中,AB=6cm,AD=9cm,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G,BG=cm,则EFCF的长为 cm三、解答题(共7小题,满分69分)18(10分)关于x的一元二次方程x2x(m+2)0有两个不相等的实数根求m的取值范围;若m为符合条件的最小整数,求此方程的根19(5分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关

6、系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图若AD2,试求出线段CP的最大值20(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一

7、个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由21(10分)如图,AB是的直径,AF是切线,CD是垂直于AB的弦,垂足为点E,过点C作DA的平行线与AF相交于点F,已知,求AD的长;求证:FC是的切线22(10分)如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把ADC绕点C逆时针旋转90得ADC,连接ED,抛物线()过E,A两点(1)填空:AOB

8、= ,用m表示点A的坐标:A( , );(2)当抛物线的顶点为A,抛物线与线段AB交于点P,且时,DOE与ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MNy轴,垂足为N:求a,b,m满足的关系式;当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围23(12分)已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性AMB恒为等腰三角形,我们规定:当AMB为直角三角形时,就称AMB为该抛物线的“完美三角形”(1)如图2,求出抛物线的“完美三角形”斜边AB的长;抛物线与

9、的“完美三角形”的斜边长的数量关系是 ;(2)若抛物线的“完美三角形”的斜边长为4,求a的值;(3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值24(14分)先化简再求值:(1),其中x参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论正确;当x=1时,y1,得到ab+c1,结论错误;根据抛物线的对称性得到结论错误;将x=2代入二次函数解析式中结合4a+b+c=1,即可求出抛物线的顶点坐标,结论正确;根据抛物线的顶点坐标为(2,b),判断【详解】解:抛物线y=ax2+b

10、x+c(a1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),抛物线与x轴的另一交点坐标为(1,1),抛物线过原点,结论正确;当x=1时,y1,ab+c1,结论错误;当x1时,y随x增大而减小,错误;抛物线y=ax2+bx+c(a1)的对称轴为直线x=2,且抛物线过原点,c=1,b=4a,c=1,4a+b+c=1,当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,抛物线的顶点坐标为(2,b),结论正确;抛物线的顶点坐标为(2,b),ax2+bx+c=b时,b24ac=1,正确;综上所述,正确的结论有:故选B【点睛】本题考查的是二次函数图象与系数的关系,二次函数

11、y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定2、B【解析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案【详解】解:由题意,得a=-4,b=1(a+b)2017=(-1)2017=-1,故选B【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键3、B【解析】方程组两方程相加表示出2xy,代入已知不等式即可求出a的范围【详解】 +得: 解得: 故选:B【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值4、D【解析】根据合并同类项、单项

12、式的乘法、积的乘方和单项式的乘法逐项计算,结合排除法即可得出答案.【详解】A. 3a+a=2a,故不正确; B. 3x22x=6x3,故不正确;C. 4a25a2=-a2 ,故不正确; D. (2x3)22x2=4x62x2=2x4,故正确;故选D.【点睛】本题考查了合并同类项、单项式的乘法、积的乘方和单项式的乘法,熟练掌握它们的运算法则是解答本题的关键.5、B【解析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是长方形可判断出这个几何体应该是四棱柱故选B.【点睛】本题考查了由三视图找到几何体图形,属于简单题,熟悉

13、三视图概念是解题关键.6、A【解析】根据相反数的定义,对每个选项进行判断即可.【详解】解:A、(1)21,1与1 互为相反数,正确;B、(1)21,故错误;C、2与互为倒数,故错误;D、2|2|,故错误;故选:A【点睛】本题考查了相反数的定义,解题的关键是掌握相反数的定义.7、D【解析】可以用排除法求解.【详解】第一,根据科学记数法的形式可以排除A选项和C选项,B选项明显不对,所以选D.【点睛】牢记科学记数法的规则是解决这一类题的关键.8、B【解析】首先连接AB,由题意易证得AOB是等边三角形,根据等边三角形的性质,可求得AOB的度数【详解】连接AB,根据题意得:OB=OA=AB,AOB是等边

14、三角形,AOB=60.故答案选:B.【点睛】本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.9、B【解析】分析:根据数量=,可知第一次买了千克,第二次买了,根据第二次恰好比第一次多买了 0.5 千克列方程即可.详解:设早上葡萄的价格是 x 元/千克,由题意得,.故选B.点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系.10、B【解析】根据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答【详解】A. 2a2+3a2=5a2,故本选项错误;B. ()-2=4,正确;C. (a+b)(ab)=a2

15、2abb2,故本选项错误;D. 8ab4ab=2,故本选项错误.故答案选B.【点睛】本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则.二、填空题(共7小题,每小题3分,满分21分)11、2【解析】只要证明PBC是等腰直角三角形即可解决问题.【详解】解:APOBPO30,APB60,PAPCPB,APC30,BPC90,PBC是等腰直角三角形,OA1,APO30,PA2OA2,BCPC2,故答案为2【点睛】本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明PBC是

16、等腰直角三角形12、1【解析】利用一元二次方程解的定义得到3a2-a=2,再把变形为,然后利用整体代入的方法计算【详解】a是方程的根,3a2-a-2=0,3a2-a=2,=5-22=1故答案为:1【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解13、1【解析】根据同底数幂乘法性质aman=am+n,即可解题.【详解】解:am+n= aman=56=1.【点睛】本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.14、-【解析】直接利用分式的混合运算法则即可得出.【详解】原式,.故答案为.【点睛】此题主要考查了分式的化简,正确掌

17、握运算法则是解题关键.15、【解析】根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D(1,4)、作点E关于x轴的对称点E(2,3),从而得到四边形EDFG的周长DEDFFGGEDEDFFGGE,当点D、F、G、E四点共线时,周长最短,据此根据勾股定理可得答案.【详解】如图,在yx22x3中,当x0时,y3,即点C(0,3),yx22x3(x1)24,对称轴为x1,顶点D(1,4),则点C关于对称轴的对称点E的坐标为(2,3),作点D关于y轴的对称点D(1,4),作点E关于x轴的对称点E(2,3),连结D、E,DE与x轴的交点G、与y轴的交点F即为使四边形EDFG的周

18、长最小的点,四边形EDFG的周长DEDFFGGEDEDFFGGEDEDE 四边形EDFG周长的最小值是.【点睛】本题主要考查抛物线的性质以及两点间的距离公式,解题的关键是熟练掌握抛物线的性质,利用数形结合得出答案.16、 【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=,由题意得:m2=2m(-1),解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=,故答案为y=.【点睛】本题考查了反比例函数,熟知

19、反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.17、5【解析】分析:AF是BAD的平分线,BAF=FADABCD中,ABDC,FAD =AEBBAF=AEBBAE是等腰三角形,即BE=AB=6cm同理可证CFE也是等腰三角形,且BAECFEBC= AD=9cm,CE=CF=3cmBAE和CFE的相似比是2:1BGAE, BG=cm,由勾股定理得EG=2cmAE=4cmEF=2cmEFCF=5cm三、解答题(共7小题,满分69分)18、(1)m;(2)x1=0,x2=1【解析】解答本题的关键是是掌握好一元二次方程的根的判别式(1)求出5+4m0即可求出m的取值范围;(2)因为m=

20、1为符合条件的最小整数,把m=1代入原方程求解即可【详解】解:(1)1+4(m2)9+4m0(2)为符合条件的最小整数,m=2原方程变为x10,x21考点:1解一元二次方程;2根的判别式19、(1)AE=DF,AEDF,理由见解析;(2)成立,CE:CD=或2;(3) 【解析】试题分析:(1)根据正方形的性质,由SAS先证得ADEDCF由全等三角形的性质得AE=DF,DAE=CDF,再由等角的余角相等可得AEDF;(2)有两种情况:当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE=a即可;当AE=AC时,设正方形的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质知A

21、DC=90,然后根据等腰三角形的性质得出DE=CD=a即可;(3)由(1)(2)知:点P的路径是一段以AD为直径的圆,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最大,再由勾股定理可得QC的长,再求CP即可试题解析:(1)AE=DF,AEDF, 理由是:四边形ABCD是正方形,AD=DC,ADE=DCF=90,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,DE=CF,在ADE和DCF中,AE=DF,DAE=FDC, ADE=90,ADP+CDF=90,ADP+DAE=90,APD=180-90=90,AEDF; (2)(1)中的结论还成立, 有两种情况:如图1

22、,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得,则; 如图2,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:,四边形ABCD是正方形,ADC=90,即ADCE,DE=CD=a,CE:CD=2a:a=2; 即CE:CD=或2; (3)点P在运动中保持APD=90,点P的路径是以AD为直径的圆,如图3,设AD的中点为Q,连接CQ并延长交圆弧于点P,此时CP的长度最大,在RtQDC中, 即线段CP的最大值是. 点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论

23、思想,难度偏大.20、(1);(2)规则是公平的;【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=;(2)不公平,理由如下:P(小王)=,P(小李)=,规则不公平点睛:本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比21、(1);(2)证明见解析.【解析】(1)首先连接OD,由垂径定理,可

24、求得DE的长,又由勾股定理,可求得半径OD的长,然后由勾股定理求得AD的长;(2)连接OF、OC,先证明四边形AFCD是菱形,易证得AFOCFO,继而可证得FC是O的切线【详解】证明:连接OD,是的直径,设,在中,解得:,在中,;连接OF、OC,是切线,四边形FADC是平行四边形,平行四边形FADC是菱形,即,即,点C在上,是的切线【点睛】此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用22、(1)45;(m,m);(2)相似;(3);【解析】试题分析:(1)由B与C的坐标求出OB与OC的长,进一步表示出BC的长,再证三

25、角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A坐标;(2)DOEABC表示出A与B的坐标,由,表示出P坐标,由抛物线的顶点为A,表示出抛物线解析式,把点E坐标代入即可得到m与n的关系式,利用三角形相似即可得证;(3)当E与原点重合时,把A与E坐标代入,整理即可得到a,b,m的关系式;抛物线与四边形ABCD有公共点,可得出抛物线过点C时的开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大值为10,求出此时a的值;若抛物线过点A(2m,2m),求出此时a的值,即可确定出抛物线与四边形ABCD有公共点时a的范围试题解析:(1)B(

26、2m,0),C(3m,0),OB=2m,OC=3m,即BC=m,AB=2BC,AB=2m=0B,ABO=90,ABO为等腰直角三角形,AOB=45,由旋转的性质得:OD=DA=m,即A(m,m);故答案为45;m,m;(2)DOEABC,理由如下:由已知得:A(2m,2m),B(2m,0),P(2m,m),A为抛物线的顶点,设抛物线解析式为,抛物线过点E(0,n),即m=2n,OE:OD=BC:AB=1:2,EOD=ABC=90,DOEABC;(3)当点E与点O重合时,E(0,0),抛物线过点E,A,整理得:,即;抛物线与四边形ABCD有公共点,抛物线过点C时的开口最大,过点A时的开口最小,若

27、抛物线过点C(3m,0),此时MN的最大值为10,a(3m)2(1+am)3m=0,整理得:am=,即抛物线解析式为,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;若抛物线过点A(2m,2m),则,解得:am=2,m=2,a=1,则抛物线与四边形ABCD有公共点时a的范围为考点:1二次函数综合题;2压轴题;3探究型;4最值问题23、(1)AB=2;相等;(2)a=;(3), 【解析】(1)过点B作BNx轴于N,由题意可知AMB为等腰直角三角形,设出点B的坐标为(n,n),根

28、据二次函数得出n的值,然后得出AB的值,因为抛物线y=x2+1与y=x2的形状相同,所以抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;(2)根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B的坐标,得出a的值;根据最大值得出mn4m1=0,根据抛物线的完美三角形的斜边长为n得出点B的坐标,然后代入抛物线求出m和n的值.(3)根据的最大值为-1,得到化简得mn-4m-1=0,抛物线的“完美三角形”斜边长为n,所以抛物线2的“完美三角形”斜边长为n,得出B点坐标,代入可得mn关系式,即可求出m、n的值.【详解】(1)过点B作BNx轴于N,由题意可知AMB为等腰直角

29、三角形,ABx轴,易证MN=BN,设B点坐标为(n,-n),代入抛物线,得,(舍去),抛物线的“完美三角形”的斜边相等;(2)抛物线与抛物线的形状相同,抛物线与抛物线的“完美三角形”全等,抛物线的“完美三角形”斜边的长为4,抛物线的“完美三角形”斜边的长为4,B点坐标为(2,2)或(2,-2),(3) 的最大值为-1, , ,抛物线的“完美三角形”斜边长为n,抛物线的“完美三角形”斜边长为n,B点坐标为,代入抛物线,得, (不合题意舍去),24、【解析】分析:根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题详解:原式= =当时,原式=点睛:本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁