重庆市江津、巴县、长寿等七校联盟2023年高考冲刺押题(最后一卷)数学试卷含解析.doc

上传人:茅**** 文档编号:88314342 上传时间:2023-04-25 格式:DOC 页数:19 大小:2.24MB
返回 下载 相关 举报
重庆市江津、巴县、长寿等七校联盟2023年高考冲刺押题(最后一卷)数学试卷含解析.doc_第1页
第1页 / 共19页
重庆市江津、巴县、长寿等七校联盟2023年高考冲刺押题(最后一卷)数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《重庆市江津、巴县、长寿等七校联盟2023年高考冲刺押题(最后一卷)数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《重庆市江津、巴县、长寿等七校联盟2023年高考冲刺押题(最后一卷)数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的体积为( ) ABCD2已知曲线的一条对称轴方程为,曲线向左平移个单位长度,得到曲线的一个对称中心的坐标为,则的最小值是( )ABCD3已知双曲线C:=1(a0,b0)的右焦点为F,过原点

2、O作斜率为的直线交C的右支于点A,若|OA|=|OF|,则双曲线的离心率为( )ABC2D+14已知函数,.若存在,使得成立,则的最大值为( )ABCD5我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为( )ABCD6若数列为等差数列,且满足,为数列的前项和,则( )ABCD72019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则(

3、)A170B10C172D128已知集合A=y|y=|x|1,xR,B=x|x2,则下列结论正确的是( )A3A B3B CAB=B DAB=B9已知函数,关于的方程R)有四个相异的实数根,则的取值范围是()ABCD10某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正确结论是( )A有99%以上的把握认为“学生性别与中学生追星无关”B有99%以上的把握认为“学生性别与中学生追星有关”C在犯错误的概率不超过0.5%的前提下,认为“学生

4、性别与中学生追星无关”D在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”11函数 的部分图象如图所示,则 ( )A6B5C4D312已知函数是定义在上的偶函数,当时,则,,的大小关系为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知盒中有2个红球,2个黄球,且每种颜色的两个球均按,编号,现从中摸出2个球(除颜色与编号外球没有区别),则恰好同时包含字母,的概率为_.14已知过点的直线与函数的图象交于、两点,点在线段上,过作轴的平行线交函数的图象于点,当轴,点的横坐标是 15若函数在区间上恰有4个不同的零点,则正数的取值范围是_.16己知函数,若关于的不

5、等式对任意的恒成立,则实数的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,底面为直角梯形,点、分别为,的中点,且平面平面.(1)求证:平面.(2)若,求直线与平面所成角的正弦值.18(12分)在锐角中,角A,B,C所对的边分别为a,b,c.已知.(1)求的值;(2)当,且时,求的面积.19(12分)为了解广大学生家长对校园食品安全的认识,某市食品安全检测部门对该市家长进行了一次校园食品安全网络知识问卷调查,每一位学生家长仅有一次参加机会,现对有效问卷进行整理,并随机抽取出了200份答卷,统计这些答卷的得分(满分:100分)制出的频率

6、分布直方图如图所示,由频率分布直方图可以认为,此次问卷调查的得分服从正态分布,其中近似为这200人得分的平均值(同一组数据用该组区间的中点值作为代表).(1)请利用正态分布的知识求;(2)该市食品安全检测部门为此次参加问卷调查的学生家长制定如下奖励方案:得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费:每次获赠的随机话费和对应的概率为:获赠的随机话费(单位:元)概率市食品安全检测部门预计参加此次活动的家长约5000人,请依据以上数据估计此次活动可能赠送出多少话费?附:;若;则,.20(12分)已知中,内角所对边分别是其中.(1)若角为锐角,且,求的值;(2)设,求的取值范围.2

7、1(12分)如图,四棱锥中,四边形是矩形,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面平面;(2)求二面角的余弦值.22(10分)已知函数, (1)当x0时,f(x)h(x)恒成立,求a的取值范围;(2)当x0时,研究函数F(x)=h(x)g(x)的零点个数;(3)求证:(参考数据:ln1.10.0953)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】三视图对应的几何体为如图所示的几何体,利用割补法可求其体积.【详解】根据三视图可得原几何体如图所示,它是一个圆柱截去上面一块几何体,把该几何体补成如下图所

8、示的圆柱,其体积为,故原几何体的体积为. 故选:B.【点睛】本题考查三视图以及不规则几何体的体积,复原几何体时注意三视图中的点线关系与几何体中的点、线、面的对应关系,另外,不规则几何体的体积可用割补法来求其体积,本题属于基础题.2、C【解析】在对称轴处取得最值有,结合,可得,易得曲线的解析式为,结合其对称中心为可得即可得到的最小值.【详解】直线是曲线的一条对称轴.,又.平移后曲线为.曲线的一个对称中心为.,注意到故的最小值为.故选:C.【点睛】本题考查余弦型函数性质的应用,涉及到函数的平移、函数的对称性,考查学生数形结合、数学运算的能力,是一道中档题.3、B【解析】以为圆心,以为半径的圆的方程

9、为,联立,可求出点,则,整理计算可得离心率.【详解】解:以为圆心,以为半径的圆的方程为,联立,取第一象限的解得,即,则,整理得,则(舍去),.故选:B.【点睛】本题考查双曲线离心率的求解,考查学生的计算能力,是中档题.4、C【解析】由题意可知,由可得出,利用导数可得出函数在区间上单调递增,函数在区间上单调递增,进而可得出,由此可得出,可得出,构造函数,利用导数求出函数在上的最大值即可得解.【详解】,由于,则,同理可知,函数的定义域为,对恒成立,所以,函数在区间上单调递增,同理可知,函数在区间上单调递增,则,则,构造函数,其中,则.当时,此时函数单调递增;当时,此时函数单调递减.所以,.故选:C

10、.【点睛】本题考查代数式最值的计算,涉及指对同构思想的应用,考查化归与转化思想的应用,有一定的难度.5、B【解析】先求出从不超过18的素数中随机选取两个不同的数的所有可能结果,然后再求出其和等于16的结果,根据等可能事件的概率公式可求.【详解】解:不超过18的素数有2,3,5,7,11,13,17共7个,从中随机选取两个不同的数共有,其和等于16的结果,共2种等可能的结果,故概率.故选:B.【点睛】古典概型要求能够列举出所有事件和发生事件的个数,本题不可以列举出所有事件但可以用分步计数得到,属于基础题.6、B【解析】利用等差数列性质,若,则 求出,再利用等差数列前项和公式得【详解】解:因为 ,

11、由等差数列性质,若,则得,为数列的前项和,则故选:【点睛】本题考查等差数列性质与等差数列前项和.(1)如果为等差数列,若,则 (2)要注意等差数列前项和公式的灵活应用,如.7、D【解析】中位数指一串数据按从小(大)到大(小)排列后,处在最中间的那个数,平均数指一串数据的算术平均数.【详解】由茎叶图知,甲的中位数为,故;乙的平均数为,解得,所以.故选:D.【点睛】本题考查茎叶图的应用,涉及到中位数、平均数的知识,是一道容易题.8、C【解析】试题分析:集合 考点:集合间的关系9、A【解析】=,当时时,单调递减,时,单调递增,且当,当,当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则

12、,即.10、B【解析】通过与表中的数据6.635的比较,可以得出正确的选项.【详解】解:,可得有99%以上的把握认为“学生性别与中学生追星有关”,故选B.【点睛】本题考查了独立性检验的应用问题,属于基础题.11、A【解析】根据正切函数的图象求出A、B两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果【详解】由图象得,令=0,即=k,k=0时解得x=2,令=1,即,解得x=3,A(2,0),B(3,1),.故选:A.【点睛】本题考查正切函数的图象,平面向量数量积的运算,属于综合题,但是难度不大,解题关键是利用图象与正切函数图象求出坐标,再根据向量数量积的坐标运算可得结果,属于简单题.

13、12、C【解析】根据函数的奇偶性得,再比较的大小,根据函数的单调性可得选项.【详解】依题意得,当时,因为,所以在上单调递增,又在上单调递增,所以在上单调递增,即,故选:C.【点睛】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据组合数得出所有情况数及两个球颜色不相同的情况数,让两个球颜色不相同的情况数除以总情况数即为所求的概率【详解】从袋中任意地同时摸出两个球共种情况,其中有种情况是两个球颜色不相同;故其概率是故答案为:【点睛】本题主要考查了求事件概率,解题关键是掌握概率的基础知识和组

14、合数计算公式,考查了分析能力和计算能力,属于基础题.14、【解析】通过设出A点坐标,可得C点坐标,通过轴,可得B点坐标,于是再利用可得答案.【详解】根据题意,可设点,则,由于轴,故,代入,可得,即,由于在线段上,故,即,解得.15、;【解析】求出函数的零点,让正数零点从小到大排列,第三个正数零点落在区间上,第四个零点在区间外即可【详解】由,得, ,解得故答案为:【点睛】本题考查函数的零点,根据正弦函数性质求出函数零点,然后题意,把正数零点从小到大排列,由于0已经是一个零点,因此只有前3个零点在区间上由此可得的不等关系,从而得出结论,本题解法属于中档题16、【解析】首先判断出函数为定义在上的奇函

15、数,且在定义域上单调递增,由此不等式对任意的恒成立,可转化为在上恒成立,进而建立不等式组,解出即可得到答案【详解】解:函数的定义域为,且,函数为奇函数,当时,函数,显然此时函数为增函数,函数为定义在上的增函数,不等式即为,在上恒成立,解得故答案为【点睛】本题考查函数单调性及奇偶性的综合运用,考查不等式的恒成立问题,属于常规题目三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】(1)首先可得,再面面垂直的性质可得平面,即可得到,再由,即可得到线面垂直;(2)过点做平面的垂线,以为原点,分别以,为,轴建立空间直角坐标系,利用空间向量法求出线面角;【详解】

16、解:(1),点为的中点,又平面平面,平面平面,平面, 平面,又平面,又,分别为,的中点,又平面,平面,平面.(2)过点做平面的垂线,以为原点,分别以,为,轴建立空间直角坐标系,设平面的法向量为,由,得,令,得,直线与平面所成角的正弦值为.【点睛】本题考查线面垂直的判定,面面垂直的性质定理的应用,利用空间向量法求线面角,属于中档题.18、(1);(2)【解析】(1)利用二倍角公式求解即可,注意隐含条件. (2)利用(1)中的结论,结合正弦定理和同角三角函数的关系易得的值,又由求出的值,最后由正弦定理求出的值,根据三角形的面积公式即可计算得出.【详解】(1)由已知可得,所以,因为在锐角中,所以 (

17、2)因为,所以,因为是锐角三角形,所以,所以.由正弦定理可得:,所以,所以【点睛】此类问题是高考的常考题型,主要考查了正弦定理、三角函数以及三角恒等变换等知识,同时考查了学生的基本运算能力和利用三角公式进行恒等变换的技能,属于中档题.19、(1);(2)估计此次活动可能赠送出100000元话费【解析】(1)根据正态分布的性质可求的值.(2)设某家长参加活动可获赠话费为元,利用题设条件求出其分布列,再利用公式求出其期望后可得计此次活动可能赠送出的话费数额.【详解】(1)根据题中所给的统计表,结合题中所给的条件,可以求得又,所以;(2)根据题意,某家长参加活动可获赠话费的可能值有10,20,30,

18、40元,且每位家长获得赠送1次、2次话费的概率都为,得10元的情况为低于平均值,概率,得20元的情况有两种,得分低于平均值,一次性获20元话费;得分不低于平均值,2次均获赠10元话费,概率,得30元的情况为:得分不低于平均值,一次获赠10元话费,另一次获赠20元话费,其概率为,得40元的其情况得分不低于平均值,两次机会均获20元话费,概率为.所以变量的分布列为:某家长获赠话费的期望为.所以估计此次活动可能赠送出100000元话费.【点睛】本题考查正态分布、离散型随机变量的分布列及数学期望,注意与正态分布有关的计算要利用该分布的密度函数图象的对称性来进行,本题属于中档题.20、(1);(2).【

19、解析】(1)由正弦定理直接可求,然后运用两角和的正弦公式算出;(2)化简,由余弦定理得,利用基本不等式求出,确定角范围,进而求出的取值范围.【详解】(1)由正弦定理,得: ,且为锐角 (2) 【点睛】本题主要考查了正余弦定理的应用,基本不等式的应用,三角函数的值域等,考查了学生运算求解能力.21、(1)见解析;(2)【解析】(1)取中点,中点,连接,.设交于,则为的中点,连接.通过证明,证得平面,由此证得平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.【详解】(1)取中点,中点,连接,.设交于,则为的中点,连接.设,则,.由已知,平面,.,平面,平面,平面平面

20、.(2)由(1)及已知可得平面,建立如图所示的空间坐标系,设,则,设平面的法向量为,令得.设平面的法向量为,令得,二面角的余弦值为.【点睛】本小题主要考查面面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.22、(1);(2)见解析;(3)见解析【解析】(1)令H(x)=h(x)f(x)=ex1aln(x+1)(x0),求得导数,讨论a1和a1,判断导数的符号,由恒成立思想可得a的范围;(2)求得F(x)=h(x)g(x)的导数和二阶导数,判断F(x)的单调性,讨论a1,a1,F(x)的单调性和零点个数;(3)由(1)知,当a=1时,ex1+ln(x+1)对x0恒成立

21、,令;由(2)知,当a=1时,对x0恒成立,令,结合条件,即可得证【详解】()解:令H(x)=h(x)f(x)=ex1aln(x+1)(x0),则,若a1,则,H(x)0,H(x)在0,+)递增,H(x)H(0)=0,即f(x)h(x)在0,+)恒成立,满足,所以a1; 若a1,H(x)=ex在0,+)递增,H(x)H(0)=1a,且1a0,且x+时,H(x)+,则x0(0,+),使H(x0)=0进而H(x)在0,x0)递减,在(x0,+)递增,所以当x(0,x0)时H(x)H(0)=0,即当x(0,x0)时,f(x)h(x),不满足题意,舍去;综合,知a的取值范围为(,1()解:依题意得,则

22、F(x)=exx2+a,则F(x)=ex2x0在(,0)上恒成立,故F(x)=exx2+a在(,0)递增,所以F(x)F(0)=1+a,且x时,F(x);若1+a0,即a1,则F(x)F(0)=1+a0,故F(x)在(,0)递减,所以F(x)F(0)=0,F(x)在(,0)无零点; 若1+a0,即a1,则使,进而F(x)在递减,在递增,且x时,F(x)在上有一个零点,在无零点,故F(x)在(,0)有一个零点综合,当a1时无零点;当a1时有一个零点()证明:由()知,当a=1时,ex1+ln(x+1)对x0恒成立,令,则即; 由()知,当a=1时,对x0恒成立,令,则,所以;故有【点睛】本题考查导数的运用:求单调区间,考查函数零点存在定理的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题对于函数的零点问题,它和方程的根的问题,和两个函数的交点问题是同一个问题,可以互相转化;在转化为两个函数交点时,如果是一个常函数一个含自变量的函数,注意让含有自变量的函数式子尽量简单一些

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁