陕西省西安市华山中学2023年高三考前热身数学试卷含解析.doc

上传人:茅**** 文档编号:88313962 上传时间:2023-04-25 格式:DOC 页数:18 大小:1.89MB
返回 下载 相关 举报
陕西省西安市华山中学2023年高三考前热身数学试卷含解析.doc_第1页
第1页 / 共18页
陕西省西安市华山中学2023年高三考前热身数学试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《陕西省西安市华山中学2023年高三考前热身数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省西安市华山中学2023年高三考前热身数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为( )ABCD2已知复数满足,其中为虚数单位,则( )ABCD3已知单位向量,的夹角为,若

2、向量,且,则( )A2B2C4D64已知椭圆的中心为原点,为的左焦点,为上一点,满足且,则椭圆的方程为( )ABCD5已知命题p:“”是“”的充要条件;,则( )A为真命题B为真命题C为真命题D为假命题6曲线在点处的切线方程为( )ABCD7已知直线yk(x1)与抛物线C:y24x交于A,B两点,直线y2k(x2)与抛物线D:y28x交于M,N两点,设|AB|2|MN|,则( )A16B16C120D128已知函数是定义在上的偶函数,当时,则,,的大小关系为( )ABCD9已知数列是公比为的正项等比数列,若、满足,则的最小值为( )ABCD10已知数列的前项和为,且,则( )ABCD11设,是

3、两条不同的直线,是两个不同的平面,下列命题中正确的是( )A若,则B若,则C若,则D若,则12设,是双曲线的左,右焦点,是坐标原点,过点作的一条渐近线的垂线,垂足为若,则的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在正方体中,分别为棱的中点,则直线与直线所成角的正切值为_.14已知抛物线的对称轴与准线的交点为,直线与交于,两点,若,则实数_15在的二项展开式中,所有项的二项式系数之和为256,则_,项的系数等于_.16已知等边三角形的边长为1,点、分别为线段、上的动点,则取值的集合为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如

4、图,在四棱柱中,平面,底面ABCD满足BC,且()求证:平面;()求直线与平面所成角的正弦值.18(12分)已知函数.(1)若函数不存在单调递减区间,求实数的取值范围;(2)若函数的两个极值点为,求的最小值.19(12分)如图,在中,角的对边分别为,且满足,线段的中点为.()求角的大小;()已知,求的大小.20(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出直线的普通方程和曲线的直角坐标方程;(2)设直线与曲线相交于两点,的顶点也在曲线上运动,求面积的最大值.21(12分)已知矩阵,若矩阵,求矩阵的逆矩阵22

5、(10分)已知数列,满足.(1)求数列,的通项公式;(2)分别求数列,的前项和,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】三个单位的人数可能为2,2,1或3,1,1,求出甲、乙两人在同一个单位的概率,利用互为对立事件的概率和为1即可解决.【详解】由题意,三个单位的人数可能为2,2,1或3,1,1;基本事件总数有种,若为第一种情况,且甲、乙两人在同一个单位,共有种情况;若为第二种情况,且甲、乙两人在同一个单位,共有种,故甲、乙两人在同一个单位的概率为,故甲、乙两人不在同一个单位的概率为.故选:D.【点睛】本题考查

6、古典概型的概率公式的计算,涉及到排列与组合的应用,在正面情况较多时,可以先求其对立事件,即甲、乙两人在同一个单位的概率,本题有一定难度.2、A【解析】先化简求出,即可求得答案.【详解】因为,所以所以故选:A【点睛】此题考查复数的基本运算,注意计算的准确度,属于简单题目.3、C【解析】根据列方程,由此求得的值,进而求得.【详解】由于,所以,即,解得.所以所以.故选:C【点睛】本小题主要考查向量垂直的表示,考查向量数量积的运算,考查向量模的求法,属于基础题.4、B【解析】由题意可得c=,设右焦点为F,由|OP|=|OF|=|OF|知,PFF=FPO,OFP=OPF,所以PFF+OFP=FPO+OP

7、F,由PFF+OFP+FPO+OPF=180知,FPO+OPF=90,即PFPF在RtPFF中,由勾股定理,得|PF|=,由椭圆定义,得|PF|+|PF|=2a=4+8=12,从而a=6,得a2=36,于是 b2=a2c2=36=16,所以椭圆的方程为故选B点睛:椭圆的定义:到两定点距离之和为常数的点的轨迹,当和大于两定点间的距离时,轨迹是椭圆,当和等于两定点间的距离时,轨迹是线段(两定点间的连线段),当和小于两定点间的距离时,轨迹不存在5、B【解析】由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解【详解】由函数是R上的增函数,知命题p是真命题对于命题q,当,即

8、时,;当,即时,由,得,无解,因此命题q是假命题所以为假命题,A错误;为真命题,B正确;为假命题,C错误;为真命题,D错误故选:B【点睛】本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.6、A【解析】将点代入解析式确定参数值,结合导数的几何意义求得切线斜率,即可由点斜式求的切线方程.【详解】曲线,即,当时,代入可得,所以切点坐标为,求得导函数可得,由导数几何意义可知,由点斜式可得切线方程为,即,故选:A.【点睛】本题考查了导数的几何意义,在曲线上一点的切线方程求法,属于基础题.7、D【解析】分别联立直线与抛物线的方程,利用韦达定理,可得,然后计算,可得结果

9、.【详解】设, 联立则,因为直线经过C的焦点, 所以.同理可得,所以故选:D.【点睛】本题考查的是直线与抛物线的交点问题,运用抛物线的焦点弦求参数,属基础题。8、C【解析】根据函数的奇偶性得,再比较的大小,根据函数的单调性可得选项.【详解】依题意得,当时,因为,所以在上单调递增,又在上单调递增,所以在上单调递增,即,故选:C.【点睛】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.9、B【解析】利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,可

10、得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题10、C【解析】根据已知条件判断出数列是等比数列,求得其通项公式,由此求得.【详解】由于,所以数列是等比数列,其首项为,第二项为,所以公比为.所以,所以.故选:C【点睛】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题.11、D【解析】试题分析:,,故选D.考点:点线面的位置关系.12、B【解析】设过点作的垂线,其方程为,联立方程,求得,即,由

11、,列出相应方程,求出离心率.【详解】解:不妨设过点作的垂线,其方程为,由解得,即,由,所以有,化简得,所以离心率故选:B.【点睛】本题主要考查双曲线的概念、直线与直线的位置关系等基础知识,考查运算求解、推理论证能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由中位线定理和正方体性质得,从而作出异面直线所成的角,在三角形中计算可得【详解】如图,连接,分别为棱的中点,又正方体中,即是平行四边形,(或其补角)就是直线与直线所成角,是等边三角形,60,其正切值为故答案为:【点睛】本题考查异面直线所成的角,解题关键是根据定义作出异面直线所成的角14、【解析】由于直线过抛物线

12、的焦点,因此过,分别作的准线的垂线,垂足分别为,由抛物线的定义及平行线性质可得,从而再由抛物线定义可求得直线倾斜角的余弦,再求得正切即为直线斜率注意对称性,问题应该有两解【详解】直线过抛物线的焦点,过,分别作的准线的垂线,垂足分别为,由抛物线的定义知,因为,所以因为,所以,从而设直线的倾斜角为,不妨设,如图,则,同理,则,解得,由对称性还有满足题意,综上,【点睛】本题考查抛物线的性质,考查抛物线的焦点弦问题,掌握抛物线的定义,把抛物线上点到焦点距离与它到距离联系起来是解题关键15、8 1 【解析】根据二项式系数和的性质可得n,再利用展开式的通项公式求含项的系数即可.【详解】由于所有项的二项式系

13、数之和为,故的二项展开式的通项公式为,令,求得,可得含x项的系数等于,故答案为:8;1【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于中档题16、【解析】根据题意建立平面直角坐标系,设三角形各点的坐标,依题意求出,的表达式,再进行数量积的运算,最后求和即可得出结果.【详解】解: 以的中点为坐标原点,所在直线为轴,线段的垂直平分线为轴建立平面直角坐标系,如图所示,则,则,设, ,即点的坐标为,则,所以故答案为: 【点睛】本题考查平面向量的坐标表示和线性运算,以及平面向量基本定理和数量积的运算,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步

14、骤。17、 () 证明见解析;()【解析】()证明,根据得到,得到证明.() 如图所示,分别以为轴建立空间直角坐标系,平面的法向量,计算向量夹角得到答案.【详解】() 平面,平面,故.,故,故.,故平面.()如图所示:分别以为轴建立空间直角坐标系,则,.设平面的法向量,则,即,取得到,设直线与平面所成角为故.【点睛】本题考查了线面垂直,线面夹角,意在考查学生的空间想象能力和计算能力.18、(1)(2)【解析】分析:(1)先求导,再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范围.(2)先由得到,再求得,再构造函数再利用导数求其最小值.详解:(1)由函数有意义,则 由且不存在单调递减区

15、间,则在上恒成立, 上恒成立 (2)由知, 令,即 由有两个极值点 故为方程的两根, , ,则 由由 ,则上单调递减,即 由知综上所述,的最小值为.点睛:(1)本题主要考查利用导数求函数的单调区间和极值,考查利用导数求函数的最值,意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题的难点有两个,其一是求出,其二是构造函数再利用导数求其最小值.19、();().【解析】()由正弦定理边化角,再结合转化即可求解;()可设,由,再由余弦定理解得,对中,由余弦定理有,通过勾股定理逆定理可得,进而得解【详解】()由正弦定理得.而.由以上两式得,即.由于,所以,又由于,得.()设,在中,由正弦定理有

16、.由余弦定理有,整理得,由于,所以.在中,由余弦定理有.所以,所以.【点睛】本题考查正弦定理和余弦定理的综合运用,属于中档题20、(1):,:;(2)【解析】(1)由直线参数方程消去参数即可得直线的普通方程,根据极坐标方程和直角坐标方程互化的公式即可得曲线的直角坐标方程;(2)由即可得的底,由点到直线的距离的最大值为即可得高的最大值,即可得解.【详解】(1)由消去参数得直线的普通方程为,由得,曲线的直角坐标方程为;(2)曲线即,圆心到直线的距离,所以,又 点到直线的距离的最大值为,所以面积的最大值为.【点睛】本题考查了参数方程、极坐标方程和直角坐标方程的互化,考查了直线与圆的位置关系,属于中档题.21、【解析】试题分析:,所以试题解析:B因为, 所以22、(1)(2);【解析】(1),可得为公比为2的等比数列,可得为公差为1的等差数列,再算出,的通项公式,解方程组即可;(2)利用分组求和法解决.【详解】(1)依题意有又.可得数列为公比为2的等比数列,为公差为1的等差数列,由,得解得故数列,的通项公式分别为.(2),.【点睛】本题考查利用递推公式求数列的通项公式以及分组求和法求数列的前n项和,考查学生的计算能力,是一道中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁