陕西省长安市第一中学2023年高三考前热身数学试卷含解析.doc

上传人:茅**** 文档编号:88322049 上传时间:2023-04-25 格式:DOC 页数:20 大小:2.82MB
返回 下载 相关 举报
陕西省长安市第一中学2023年高三考前热身数学试卷含解析.doc_第1页
第1页 / 共20页
陕西省长安市第一中学2023年高三考前热身数学试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《陕西省长安市第一中学2023年高三考前热身数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省长安市第一中学2023年高三考前热身数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设为自然对数的底数,函数,若,则( )ABCD2已知函数是上的偶函数,且当时,函数是单调递减函数,则,的大小关系是( )A

2、BCD3执行下面的程序框图,则输出的值为 ( )ABCD4设,是非零向量.若,则( )ABCD5设命题:,则为A,B,C,D,6正的边长为2,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为( )ABCD7已知数列是公比为的正项等比数列,若、满足,则的最小值为( )ABCD8若,则实数的大小关系为( )ABCD9已知焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为( )A或B或C或D10已知与分别为函数与函数的图象上一点,则线段的最小值为( )ABCD611已知非零向量满足,若夹角的余弦值为,且,则实数的值为( )ABC或D12高三珠海一模中,经抽

3、样分析,全市理科数学成绩X近似服从正态分布,且从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( )A40B60C80D100二、填空题:本题共4小题,每小题5分,共20分。13在疫情防控过程中,某医院一次性收治患者127人.在医护人员的精心治疗下,第15天开始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果从第16天开始,每天出院的人数是前一天出院人数的2倍,那么第19天治愈出院患者的人数为_,第_天该医院本次收治的所有患者能全部治愈出院.14某学习小组有名男生和名女生.若从中随机选出名同学代表该小组参加知识竞赛,则选出的名同学中恰好名男生名女生的概率

4、为_15数列的前项和为 ,则数列的前项和_16在中,角的对边分别为,且,若外接圆的半径为,则面积的最大值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在直三棱柱ABCA1B1C1中,ABC90,ABAA1,M,N分别是AC,B1C1的中点求证:(1)MN平面ABB1A1;(2)ANA1B18(12分)已知为等差数列,为等比数列,的前n项和为,满足,.(1)求数列和的通项公式;(2)令,数列的前n项和,求.19(12分)已知函数,.(1)当时,求函数在点处的切线方程;比较与的大小; (2)当时,若对时,且有唯一零点,证明:20(12分)在等比数列中,已知

5、,.设数列的前n项和为,且,(,).(1)求数列的通项公式;(2)证明:数列是等差数列;(3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.21(12分)已知.(1)求不等式的解集;(2)记的最小值为,且正实数满足.证明:.22(10分)设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.()若分别为椭圆的左、右焦点,且直线轴,求四边形的面积;()若直线的斜率存在且不为0,四边形为平行四边形,求证:;()在()的条件下,判断四边形能否为矩形,说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的

6、四个选项中,只有一项是符合题目要求的。1、D【解析】利用与的关系,求得的值.【详解】依题意,所以故选:D【点睛】本小题主要考查函数值的计算,属于基础题.2、D【解析】利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.【详解】因为,故.又,故.因为当时,函数是单调递减函数,所以.因为为偶函数,故,所以.故选:D.【点睛】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.3、D【解析】根据框图,模拟程序运行,即可求出答案.【详解】运行程序,结束循环,故输出,故选:D.【点睛】本题主要考查了程序框图,循

7、环结构,条件分支结构,属于中档题.4、D【解析】试题分析:由题意得:若,则;若,则由可知,故也成立,故选D.考点:平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);将条件通过向量的线性运算进行转化,再利用求解(较难);建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.5、D【解析】直接利用全称命题的否定是特称命题写出结果即可.【

8、详解】因为全称命题的否定是特称命题,所以,命题:,则为:,.故本题答案为D.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.6、D【解析】如图所示,设的中点为,的外接圆的圆心为,四面体的外接球的球心为,连接,利用正弦定理可得,利用球心的性质和线面垂直的性质可得四边形为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积.【详解】如图所示,设的中点为,外接圆的圆心为,四面体的外接球的球心为,连接,则平面,.因为,故,因为,故.由正弦定理可得,故,又因为,故.因为,故平面,所以,因为平面,平面,故,故,所以四边形为平行四边形,所以,所以,故外接球的半径为,外接球

9、的表面积为.故选:D.【点睛】本题考查平面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形中来计算,本题有一定的难度.7、B【解析】利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质

10、等基础知识,考查数学运算求解能力和分类讨论思想,是中等题8、A【解析】将化成以 为底的对数,即可判断 的大小关系;由对数函数、指数函数的性质,可判断出 与1的大小关系,从而可判断三者的大小关系.【详解】依题意,由对数函数的性质可得.又因为,故.故选:A.【点睛】本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断大小;若真数和底数都不相同,则可与中间值如1,0比较大小.9、A【解析】过作与准线垂直,垂足为,利用抛物线的定义可得,要使最大,则应最大

11、,此时与抛物线相切,再用判别式或导数计算即可.【详解】过作与准线垂直,垂足为,则当取得最大值时,最大,此时与抛物线相切,易知此时直线的斜率存在,设切线方程为,则.则,则直线的方程为.故选:A.【点睛】本题考查直线与抛物线的位置关系,涉及到抛物线的定义,考查学生转化与化归的思想,是一道中档题.10、C【解析】利用导数法和两直线平行性质,将线段的最小值转化成切点到直线距离.【详解】已知与分别为函数与函数的图象上一点,可知抛物线存在某条切线与直线平行,则,设抛物线的切点为,则由可得,所以切点为,则切点到直线的距离为线段的最小值,则.故选:C.【点睛】本题考查导数的几何意义的应用,以及点到直线的距离公

12、式的应用,考查转化思想和计算能力.11、D【解析】根据向量垂直则数量积为零,结合以及夹角的余弦值,即可求得参数值.【详解】依题意,得,即.将代入可得,解得(舍去).故选:D.【点睛】本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题.12、D【解析】由正态分布的性质,根据题意,得到,求出概率,再由题中数据,即可求出结果.【详解】由题意,成绩X近似服从正态分布,则正态分布曲线的对称轴为,根据正态分布曲线的对称性,求得,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为人,故选:.【点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.二、填空题:本题共4小题

13、,每小题5分,共20分。13、16 1 【解析】由题意可知出院人数构成一个首项为1,公比为2的等比数列,由此可求结果【详解】某医院一次性收治患者127人第15天开始有患者治愈出院,并且恰有其中的1名患者治愈出院且从第16天开始,每天出院的人数是前一天出院人数的2倍,从第15天开始,每天出院人数构成以1为首项,2为公比的等比数列,则第19天治愈出院患者的人数为,解得,第天该医院本次收治的所有患者能全部治愈出院故答案为:16,1【点睛】本题主要考查了等比数列在实际问题中的应用,考查等比数列的性质等基础知识,考查推理能力与计算能力,属于中档题14、【解析】从7人中选出2人则总数有,符合条件数有,后者

14、除以前者即得结果【详解】从7人中随机选出2人的总数有,则记选出的名同学中恰好名男生名女生的概率为事件,故答案为:【点睛】组合数与概率的基本运用,熟悉组合数公式15、【解析】解: 两式作差,得 ,经过检验得出数列的通项公式,进而求得 的通项公式, 裂项相消求和即可【详解】解:两式作差,得 化简得 ,检验:当n=1时, ,所以数列 是以2为首项,2为公比的等比数列; ,令 故填: 【点睛】本题考查求数列的通项公式,裂项相消求数列的前n项和,解题过程中需要注意n的范围以及对特殊项的讨论,侧重考查运算能力16、【解析】由正弦定理,三角函数恒等变换的应用化简已知等式,结合范围可求的值,利用正弦定理可求的

15、值,进而根据余弦定理,基本不等式可求的最大值,进而根据三角形的面积公式即可求解.【详解】解:,由正弦定理可得:,又,即,可得:,外接圆的半径为,解得,由余弦定理,可得,又,(当且仅当时取等号),即最大值为4,面积的最大值为.故答案为:.【点睛】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,基本不等式,三角形的面积公式在解三角形中的应用,考查了转化思想,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2)详见解析.【解析】(1)利用平行四边形的方法,证明平面.(2)通过证明平面,由此证得.【详解】(1)设是中点,连接,由于是中点,所以且

16、,而且,所以与平行且相等,所以四边形是平行四边形,所以,由于平面,平面,所以平面.(2)连接,由于直三棱柱中,而,所以平面,所以,由于,所以.由于四边形是矩形且,所以四边形是正方形,所以,由于,所以平面,所以.【点睛】本小题主要考查线面平行的证明,考查线面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.18、(1),;(2)【解析】(1)设的公差为,的公比为,由基本量法列式求出后可得通项公式;(2)奇数项分一组用裂项相消法求和,偶数项分一组用等比数列求和公式求和【详解】(1)设的公差为,的公比为,由,.得:,解得,;(2)由,得,为奇数时,为偶数时,【点睛】本题考查求等差数列和等比数列

17、的通项公式,考查分组求和法及裂项相消法、等差数列与等比数列的前项和公式,求通项公式采取的是基本量法,即求出公差、公比,由通项公式前项和公式得出相应结论数列求和问题,对不是等差数列或等比数列的数列求和,需掌握一些特殊方法:错位相减法,裂项相消法,分组(并项)求和法,倒序相加法等等19、(1)见解析,见解析;(2)见解析【解析】(1)把代入函数解析式,求出函数的导函数得到,再求出,利用直线方程的点斜式求函数在点处的切线方程;令,利用导数研究函数的单调性,可得当时,;当时,;当时,(2)由题意,在上有唯一零点利用导数可得当时,在上单调递减,当,时,在,上单调递增,得到由在恒成立,且有唯一解,可得,得

18、,即令,则,再由在上恒成立,得在上单调递减,进一步得到在上单调递增,由此可得【详解】解:(1)当时,又,切线方程为,即;令,则,在上单调递减又,当时,即;当时,即;当时,即证明:(2)由题意,而,令,解得,在上有唯一零点当时,在上单调递减,当,时,在,上单调递增在恒成立,且有唯一解,即,消去,得,即令,则,在上恒成立,在上单调递减,又, ,在上单调递增,【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查利用导数研究函数的单调性,考查逻辑思维能力与推理论证能力,属难题20、(1)(2)见解析(3)存在唯一的等差数列,其通项公式为,满足题设【解析】(1)由,可得公比,即得;(2)由(1)和

19、可得数列的递推公式,即可知结果为常数,即得证;(3)由(2)可得数列的通项公式,设出等差数列,再根据不等关系来算出的首项和公差即可.【详解】(1)设等比数列的公比为q,因为,所以,解得.所以数列的通项公式为:.(2)由(1)得,当,时,可得,得,则有,即,.因为,由得,所以,所以,.所以数列是以为首项,1为公差的等差数列.(3)由(2)得,所以,.假设存在等差数列,其通项,使得对任意,都有,即对任意,都有.首先证明满足的.若不然,则,或.(i)若,则当,时,这与矛盾.(ii)若,则当,时,.而,所以.故,这与矛盾.所以.其次证明:当时,.因为,所以在上单调递增,所以,当时,.所以当,时,.再次

20、证明.(iii)若时,则当,这与矛盾.(iv)若时,同(i)可得矛盾.所以.当时,因为,所以对任意,都有.所以,.综上,存在唯一的等差数列,其通项公式为,满足题设.【点睛】本题考查求等比数列通项公式,证明等差数列,以及数列中的探索性问题,是一道数列综合题,考查学生的分析,推理能力.21、(1)或;(2)见解析【解析】(1)根据,利用零点分段法解不等式,或作出函数的图像,利用函数的图像解不等式;(2)由(1)作出的函数图像求出的最小值为,可知,代入中,然后给等式两边同乘以,再将写成后,化简变形,再用均值不等式可证明.【详解】(1)解法一:1时,即,解得;2时,即,解得;3时,即,解得.综上可得,

21、不等式的解集为或.解法二:由作出图象如下:由图象可得不等式的解集为或.(2)由所以在上单调递减,在上单调递增,所以,正实数满足,则,即,(当且仅当即时取等号)故,得证.【点睛】此题考查了绝对值不等式的解法,绝对值不等式的性质和均值不等式的运用,考查了分类讨论思想和转化思想,属于中档题.22、 () ;()证明见解析;()不能,证明见解析【解析】()计算得到故,计算得到面积.() 设为,联立方程得到,计算,同理,根据得到,得到证明.() 设中点为,根据点差法得到,同理,故,得到结论.【详解】(),故,.故四边形的面积为.()设为,则,故,设,故,同理可得,故,即,故.()设中点为,则,相减得到,即,同理可得:的中点,满足,故,故四边形不能为矩形.【点睛】本题考查了椭圆内四边形的面积,形状,根据四边形形状求参数,意在考查学生的计算能力和综合应用能力.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁