《浙江省温州七校2023届高三第三次测评数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省温州七校2023届高三第三次测评数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在区间上随机取一个实数,使直线与圆相交的概率为( )ABCD2已知函数,若关于的方程有且只有一个实数根,则实数的取值范围是( )ABCD3在关于的不等式中,“”是“恒成立”的( )A充分不必
2、要条件B必要不充分条件C充要条件D既不充分也不必要条件4已知与函数和都相切,则不等式组所确定的平面区域在内的面积为( )ABCD51777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为( )ABCD6设集合,若,则的取值范围是( )ABCD7已知命题:任意,都有;命题:,则有则下列命题为真命题的是()ABCD8已
3、知倾斜角为的直线与直线垂直,则( )ABCD9已知函数在上单调递增,则的取值范围( )ABCD10已知函数满足,当时,则( )A或B或C或D或11已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,且,则该双曲线的渐近线方程为( )ABCD12在各项均为正数的等比数列中,若,则( )AB6C4D5二、填空题:本题共4小题,每小题5分,共20分。13某班星期一共八节课(上午、下午各四节,其中下午最后两节为社团活动),排课要求为:语文、数学、外语、物理、化学各排一节,从生物、历史、地理、政治四科中选排一节.若数学必须安排在上午且与外语不相邻(上午第四节和下午第一节不算相邻),则不同的排法有_
4、种.14设是定义在上的函数,且,对任意,若经过点的一次函数与轴的交点为,且互不相等,则称为关于函数的平均数,记为.当_时,为的几何平均数.(只需写出一个符合要求的函数即可)15西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个数能构成勾股数的概率为_16六位同学坐在一排,现让六位同学重新坐,恰有两位同学坐自己原来的位置,则不同的坐法有_种(用数字回答).三、解答题:共70分。解答应写出文
5、字说明、证明过程或演算步骤。17(12分)在四边形中,;如图,将沿边折起,连结,使,求证:(1)平面平面;(2)若为棱上一点,且与平面所成角的正弦值为,求二面角的大小.18(12分)在中,角,的对边分别为,已知(1)若,成等差数列,求的值;(2)是否存在满足为直角?若存在,求的值;若不存在,请说明理由19(12分)已知椭圆的左、右顶点分别为、,上、下顶点分别为,为其右焦点,且该椭圆的离心率为;()求椭圆的标准方程;()过点作斜率为的直线交椭圆于轴上方的点,交直线于点,直线与椭圆的另一个交点为,直线与直线交于点若,求取值范围20(12分)在直角坐标系中,曲线的参数方程为(为参数).点在曲线上,点
6、满足.(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求动点的轨迹的极坐标方程;(2)点,分别是曲线上第一象限,第二象限上两点,且满足,求的值.21(12分)的内角,的对边分别为,其面积记为,满足.(1)求;(2)若,求的值.22(10分)已知函数.(1)若,求不等式的解集;(2)已知,若对于任意恒成立,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用直线与圆相交求出实数的取值范围,然后利用几何概型的概率公式可求得所求事件的概率.【详解】由于直线与圆相交,则,解得.因此,所求概率为.故选:D.【
7、点睛】本题考查几何概型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题.2、B【解析】利用换元法设,则等价为有且只有一个实数根,分 三种情况进行讨论,结合函数的图象,求出的取值范围.【详解】解:设 ,则有且只有一个实数根.当 时,当 时, ,由即,解得,结合图象可知,此时当时,得 ,则 是唯一解,满足题意;当时,此时当时,此时函数有无数个零点,不符合题意;当 时,当 时,此时 最小值为 ,结合图象可知,要使得关于的方程有且只有一个实数根,此时 .综上所述: 或.故选:A.【点睛】本题考查了函数方程根的个数的应用.利用换元法,数形结合是解决本题的关键.3、C【解析】讨论当
8、时,是否恒成立;讨论当恒成立时,是否成立,即可选出正确答案.【详解】解:当时,由开口向上,则恒成立;当恒成立时,若,则 不恒成立,不符合题意,若 时,要使得恒成立,则 ,即 .所以“”是“恒成立”的充要条件.故选:C.【点睛】本题考查了命题的关系,考查了不等式恒成立问题.对于探究两个命题的关系时,一般分成两步,若,则推出 是 的充分条件;若,则推出 是 的必要条件.4、B【解析】根据直线与和都相切,求得的值,由此画出不等式组所表示的平面区域以及圆,由此求得正确选项.【详解】.设直线与相切于点,斜率为,所以切线方程为,化简得.令,解得,所以切线方程为,化简得.由对比系数得,化简得.构造函数,所以
9、在上递减,在上递增,所以在处取得极小值也即是最小值,而,所以有唯一解.也即方程有唯一解.所以切线方程为.即.不等式组即,画出其对应的区域如下图所示.圆可化为,圆心为.而方程组的解也是.画出图像如下图所示,不等式组所确定的平面区域在内的部分如下图阴影部分所示.直线的斜率为,直线的斜率为.所以,所以,而圆的半径为,所以阴影部分的面积是.故选:B【点睛】本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.5、D【解析】根据统计数据,求出频率,用以估计概率.【详解】.故
10、选:D.【点睛】本题以数学文化为背景,考查利用频率估计概率,属于基础题.6、C【解析】由得出,利用集合的包含关系可得出实数的取值范围.【详解】,且,.因此,实数的取值范围是.故选:C.【点睛】本题考查利用集合的包含关系求参数,考查计算能力,属于基础题.7、B【解析】先分别判断命题真假,再由复合命题的真假性,即可得出结论.【详解】为真命题;命题是假命题,比如当,或时,则 不成立.则,均为假.故选:B【点睛】本题考查复合命题的真假性,判断简单命题的真假是解题的关键,属于基础题.8、D【解析】倾斜角为的直线与直线垂直,利用相互垂直的直线斜率之间的关系,同角三角函数基本关系式即可得出结果.【详解】解:
11、因为直线与直线垂直,所以,.又为直线倾斜角,解得.故选:D.【点睛】本题考查了相互垂直的直线斜率之间的关系,同角三角函数基本关系式,考查计算能力,属于基础题.9、B【解析】由,可得,结合在上单调递增,易得,即可求出的范围.【详解】由,可得,时,而,又在上单调递增,且,所以,则,即,故.故选:B.【点睛】本题考查了三角函数的单调性的应用,考查了学生的逻辑推理能力,属于基础题.10、C【解析】简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【详解】由,可知函数关于对称当时,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【点睛】本题考查函数
12、的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,考验分析能力,属中档题.11、D【解析】根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.【详解】如图所示:因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以渐近线方程为.故选:D.【点睛】本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.12、D【解析】由对数运算法则和等比数列的性质计算【详解】由题意故选:D【点睛】本题考查等比数列的性质,考查对数的运算法则掌握等比数列的性质是解题关键二、填空题:本题共4小题,每小题5分,
13、共20分。13、1344【解析】分四种情况讨论即可【详解】解:数学排在第一节时有:数学排在第二节时有:数学排在第三节时有:数学排在第四节时有: 所以共有1344种故答案为:1344【点睛】考查排列、组合的应用,注意分类讨论,做到不重不漏;基础题.14、【解析】由定义可知三点共线,即,通过整理可得,继而可求出正确答案.【详解】解:根据题意,由定义可知:三点共线.故可得:,即,整理得:,故可以选择等.故答案为: .【点睛】本题考查了两点的斜率公式,考查了推理能力,考查了运算能力.本题关键是分析出三点共线.15、【解析】由组合数结合古典概型求解即可【详解】从11个数中随机抽取3个数有种不同的方法,其
14、中能构成勾股数的有共三种,所以,所求概率为.故答案为【点睛】本题考查古典概型与数学文化,考查组合问题,数据处理能力和应用意识.16、135【解析】根据题意先确定2个人位置不变,共有种选择,再确定4个人坐4个位置,但是不能坐原来的位置,计算得到答案.【详解】根据题意先确定2个人位置不变,共有种选择.再确定4个人坐4个位置,但是不能坐原来的位置,共有种选择,故不同的坐法有.故答案为:.【点睛】本题考查了分步乘法原理,意在考查学生的计算能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见详解;(2)【解析】(1)由题可知,等腰直角三角形与等边三角形,在其公
15、共边AC上取中点O,连接、,可得,可求出.在中,由勾股定理可证得,结合,可证明平面.再根据面面垂直的判定定理,可证平面平面.(2)以为坐标原点,建立如图所示的空间直角坐标系,由点F在线段上,设,得出的坐标,进而求出平面的一个法向量.用向量法表示出与平面所成角的正弦值,由其等于,解得.再结合为平面的一个法向量,用向量法即可求出与的夹角,结合图形,写出二面角的大小.【详解】证明:(1)在中,为正三角形,且在中,为等腰直角三角形,且取的中点,连接,平面平面平面.平面平面(2)以为坐标原点,建立如图所示的空间直角坐标系,则,设.则设平面的一个法向量为.则,令,解得与平面所成角的正弦值为,整理得解得或(
16、含去)又为平面的一个法向量,二面角的大小为.【点睛】本题考查了线面垂直的判定,面面垂直的判定,向量法解决线面角、二面角的问题,属于中档题.18、见解析【解析】(1)因为,成等差数列,所以,由余弦定理可得,因为,所以,即,所以(2)若B为直角,则,由及正弦定理可得,所以,即,上式两边同时平方,可得,所以(*)又,所以,所以,与(*)矛盾,所以不存在满足为直角19、();(),【解析】()由题意可得,的坐标,结合椭圆离心率,及隐含条件列式求得,的值,则椭圆方程可求;()设直线,求得的坐标,再设直线,求出点的坐标,写出的方程,联立与,可求出的坐标,由,可得关于的函数式,由单调性可得取值范围【详解】(
17、),由,得,又,解得:,椭圆的标准方程为;()设直线,则与直线的交点,又,设直线,联立,消可得解得,联立,得,直线,联立,解得,函数在上单调递增,【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查运算求解能力,意在考查学生对这些知识的理解掌握水平和分析推理计算能力20、(1)();(2)【解析】(1)由已知,曲线的参数方程消去t后,要注意x的范围,再利用普通方程与极坐标方程的互化公式运算即可;(2)设,由(1)可得,相加即可得到证明.【详解】(1),由题可知:,:().(2)因为,设,则,.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,考查学生的计算能力,是一道容易题
18、.21、(1);(2)【解析】(1)根据三角形面积公式及平面向量数量积定义代入公式,即可求得,进而求得的值;(2)根据正弦定理将边化为角,结合(1)中的值,即可将表达式化为的三角函数式;结合正弦和角公式与辅助角公式化简,即可求得和,进而由正弦定理确定,代入整式即可求解.【详解】(1)因为,所以由三角形面积公式及平面向量数量积运算可得,所以.因为,所以.(2)因为,所以由正弦定理代入化简可得,由(1),代入可得,展开化简可得,根据辅助角公式化简可得.因为,所以,所以,所以为等腰三角形,且,所以.【点睛】本题考查了正弦定理在解三角形中的应用,三角形面积公式的应用,平面向量数量积的运算,正弦和角公式及辅助角公式的简单应用,属于基础题.22、(1)或;(2).【解析】(1)时,分类讨论,去掉绝对值,分类讨论解不等式.(2)时,分类讨论去绝对值,得到解析式,由函数的单调性可得的最小值,通过恒成立问题,得到关于的不等式,得到的取值范围.【详解】(1)因为,所以,所以不等式等价于或或,解得或.所以不等式的解集为或.(2)因为,所以,根据函数的单调性可知函数的最小值为,因为恒成立,所以,解得.所以实数的取值范围是.【点睛】本题考查分类讨论去绝对值,分段函数求最值,不等式恒成立问题,属于中档题.