《江西省南昌二中2023届高三第三次测评数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省南昌二中2023届高三第三次测评数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1阅读如图的程序框图,运行相应的程序,则输出的的值为( )ABCD2已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为( )ABCD3已知实数、满足不等式组,则的最大
2、值为()ABCD4已知函数满足:当时,且对任意,都有,则( )A0B1C-1D5已知等比数列的各项均为正数,设其前n项和,若(),则( )A30BCD626已知函数的图象向左平移个单位后得到函数的图象,则的最小值为( )ABCD7在复平面内,复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限8已知直线与圆有公共点,则的最大值为( )A4BCD9已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是( )ABCD10已知函数的导函数为,记,N. 若,则 ( )ABCD11已知,满足约束条件,则的最大值为ABCD12已知集合,若,则
3、( )A4B4C8D8二、填空题:本题共4小题,每小题5分,共20分。13已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是_14已知等差数列的前n项和为,则_15在边长为的菱形中,点在菱形所在的平面内若,则_16的展开式中,x5的系数是_(用数字填写答案)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在数列中,已知,且,.(1)求数列的通项公式;(2)设,数列的前项和为,证明:.18(12分)已知函数.() 求函数的单调区间;() 当时,求函数在上最小值.19(12分)在直角坐标系中,曲线的参数方程为(为参数,将曲线经过伸缩变换后得到曲线.在以原
4、点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;(2)已知点是曲线上的任意一点,又直线上有两点和,且,又点的极角为,点的极角为锐角.求:点的极角;面积的取值范围.20(12分)在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加。中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,统计他们出门随身携带现金(单位:元)如茎叶图如示,规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支
5、付族”. (1)根据上述样本数据,将列联表补充完整,并判断有多大的把握认为“手机支付族”与“性别”有关?(2)用样本估计总体,若从腾讯服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为,求随机变量的期望和方差;(3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减100元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5折.如果你打算用手机支付购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?附: 0.0500.0100.001
6、3.8416.63510.82821(12分)已知三棱锥中侧面与底面都是边长为2的等边三角形,且面面,分别为线段的中点.为线段上的点,且.(1)证明:为线段的中点;(2)求二面角的余弦值.22(10分)随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:分组频数(单位:名)使用“余额宝”使用“财富通”使用“京东小金库”30使用其他理财产品50合计1200已知这1200名市
7、民中,使用“余额宝”的人比使用“财富通”的人多160名.(1)求频数分布表中,的值;(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为.若在1200名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为,求的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的
8、四个选项中,只有一项是符合题目要求的。1、C【解析】根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.【详解】由题意,第1次循环,满足判断条件;第2次循环,满足判断条件;第3次循环,满足判断条件; 可得的值满足以3项为周期的计算规律,所以当时,跳出循环,此时和时的值对应的相同,即.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.2、D【解析】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【详解】
9、设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D【点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.3、A【解析】画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案【详解】画出不等式组所表示平面区域,如图所示,由目标函数,化为直线,当直线过点A时,此时直线在y轴上的截距最大,目标函数取得最大值,又由,解得,所以目标函数的最大值为,故选A【点睛】本题主要考查简单线性规划求解目标函数的最值问题其中解答中正确画出不等式组表示的可行域,利用“一画、二移、
10、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题4、C【解析】由题意可知,代入函数表达式即可得解.【详解】由可知函数是周期为4的函数,.故选:C.【点睛】本题考查了分段函数和函数周期的应用,属于基础题.5、B【解析】根据,分别令,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n项和公式进行求解即可.【详解】设等比数列的公比为,由题意可知中:.由,分别令,可得、,由等比数列的通项公式可得:,因此.故选:B【点睛】本题考查了等比数列的通项公式和前n项和公式的应用,考查了数学运算能力.6、A【解析】首先求得
11、平移后的函数,再根据求的最小值.【详解】根据题意,的图象向左平移个单位后,所得图象对应的函数,所以,所以又,所以的最小值为故选:A【点睛】本题考查三角函数的图象变换,诱导公式,意在考查平移变换,属于基础题型.7、B【解析】化简复数为的形式,然后判断复数的对应点所在象限,即可求得答案.【详解】对应的点的坐标为在第二象限故选:B.【点睛】本题主要考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.8、C【解析】根据表示圆和直线与圆有公共点,得到,再利用二次函数的性质求解.【详解】因为表示圆,所以,解得,因为直线与圆有公共点,所以圆心到直线的距离,即 ,解得,此时, 因为,
12、在递增,所以的最大值.故选:C【点睛】本题主要考查圆的方程,直线与圆的位置关系以及二次函数的性质,还考查了运算求解的能力,属于中档题.9、A【解析】由已知先确定出双曲线方程为,再分别找到为直角三角形的两种情况,最后再结合即可解决.【详解】由已知可得,所以,从而双曲线方程为,不妨设点在双曲线右支上运动,则,当时,此时,所以,所以;当轴时,所以,又为锐角三角形,所以.故选:A.【点睛】本题考查双曲线的性质及其应用,本题的关键是找到为锐角三角形的临界情况,即为直角三角形,是一道中档题.10、D【解析】通过计算,可得,最后计算可得结果.【详解】由题可知:所以所以猜想可知:由所以所以故选:D【点睛】本题
13、考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.11、D【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论【详解】作出不等式组表示的平面区域如下图中阴影部分所示,等价于,作直线,向上平移,易知当直线经过点时最大,所以,故选D【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法12、B【解析】根据交集的定义,可知,代入计算即可求出.【详解】由,可知,又因为,所以时,解得.故选:B.【点睛】本题考查交集的概念,属于基础题.二、填空题:本题共4小题,每小题5分
14、,共20分。13、0.08【解析】先求解这组数据的平均数,然后利用方差的公式可得结果.【详解】首先求得,故答案为:0.08.【点睛】本题主要考查数据的方差,明确方差的计算公式是求解的关键,侧重考查数据分析的核心素养.14、【解析】利用求出公差,结合等差数列的通项公式可求.【详解】设公差为,因为,所以,即.所以.故答案为:【点睛】本题主要考查等差数列通项公式的求解,利用等差数列的基本量是求解这类问题的通性通法,侧重考查数学运算的核心素养.15、【解析】以菱形的中心为坐标原点建立平面直角坐标系,再设,根据求出的坐标,进而求得即可.【详解】解:连接设交于点以点为原点,分别以直线为轴,建立如图所示的平
15、面直角坐标系,则:设 得,解得,或,显然得出的是定值,取则,故答案为:【点睛】本题主要考查了建立平面直角坐标系求解向量数量积的有关问题,属于中档题.16、-189【解析】由二项式定理得,令r = 5得x5的系数是三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】(1)由已知变形得到,从而是等差数列,然后利用等差数列的通项公式计算即可;(2)先求出数列的通项,再利用裂项相消法求出即可.【详解】(1)由已知,即,又,则数列是以1为首项3 为公差的等差数列,所以,即.(2)因为,则,所以,又是递增数列,所以,综上,.【点睛】本题考查由递推公式求数列通项
16、公式、裂项相消法求数列的和,考查学生的计算能力,是一道基础题.18、 ()见解析;()当时,函数的最小值是;当时,函数的最小值是【解析】(1)求出导函数,并且解出它的零点x=,再分区间讨论导数的正负,即可得到函数f(x)的单调区间;(2)分三种情况加以讨论,结合函数的单调性与函数值的大小比较,即可得到当0aln 2时,函数f(x)的最小值是-a;当aln2时,函数f(x)的最小值是ln2-2a【详解】函数的定义域为因为,令,可得;当时,;当时,综上所述:可知函数的单调递增区间为,单调递减区间为当,即时,函数在区间上是减函数,的最小值是当,即时,函数在区间上是增函数,的最小值是当,即时,函数在上
17、是增函数,在上是减函数又,当时,的最小值是;当时,的最小值为综上所述,结论为当时,函数的最小值是;当时,函数的最小值是.【点睛】求函数极值与最值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小19、(1)曲线为圆心在原点,半径为2的圆.的极坐标方程为(2)【解析】(1)求得曲线伸缩变换后所得的参数方程,消参后求得
18、的普通方程,判断出对应的曲线,并将的普通方程转化为极坐标方程.(2)将的极角代入直线的极坐标方程,由此求得点的极径,判断出为等腰三角形,求得直线的普通方程,由此求得,进而求得,从而求得点的极角.解法一:利用曲线的参数方程,求得曲线上的点到直线的距离的表达式,结合三角函数的知识求得的最小值和最大值,由此求得面积的取值范围.解法二:根据曲线表示的曲线,利用圆的几何性质求得圆上的点到直线的距离的最大值和最小值,进而求得面积的取值范围.【详解】(1)因为曲线的参数方程为(为参数),因为则曲线的参数方程所以的普通方程为.所以曲线为圆心在原点,半径为2的圆.所以的极坐标方程为,即.(2)点的极角为,代入直
19、线的极坐标方程得点极径为,且,所以为等腰三角形,又直线的普通方程为,又点的极角为锐角,所以,所以,所以点的极角为.解法1:直线的普通方程为.曲线上的点到直线的距离.当,即()时,取到最小值为.当,即()时,取到最大值为.所以面积的最大值为;所以面积的最小值为;故面积的取值范围.解法2:直线的普通方程为.因为圆的半径为2,且圆心到直线的距离,因为,所以圆与直线相离.所以圆上的点到直线的距离最大值为,最小值为.所以面积的最大值为;所以面积的最小值为;故面积的取值范围.【点睛】本小题考查坐标变换,极径与极角;直线,圆的极坐标方程,圆的参数方程,直线的极坐标方程与普通方程,点到直线的距离等.考查数学运
20、算能力,包括运算原理的理解与应用、运算方法的选择与优化、运算结果的检验与改进等.也兼考了数学抽象素养、逻辑推理、数学运算、直观想象等核心素养.20、(1)列联表见解析,99%;(2),;(3)第二种优惠方案更划算.【解析】(1)根据已知数据得出列联表,再根据独立性检验得出结论;(2)有数据可知,女性中“手机支付族”的概率为,知服从二项分布,即,可求得其期望和方差;(3)若选方案一,则需付款元,若选方案二,设实际付款元,则的取值为1200,1080,1020,求出实际付款的期望,再比较两个方案中的付款的金额的大小,可得出选择的方案.【详解】(1)由已知得出联列表:,所以, 有99%的把握认为“手
21、机支付族”与“性别”有关;(2)有数据可知,女性中“手机支付族”的概率为, ,;(3)若选方案一,则需付款元 若选方案二,设实际付款元,则的取值为1200,1080,1020, 选择第二种优惠方案更划算【点睛】本题考查独立性检验,二项分布的期望和方差,以及由期望值确定决策方案,属于中档题.21、(1)见解析;(2)【解析】(1)设为中点,连结,先证明,可证得,假设不为线段的中点,可得平面,这与矛盾,即得证;(2)以为原点,以分别为轴建立空间直角坐标系,分别求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.【详解】(1)设为中点,连结.,又 平面,平面,.又分别为中点,又,.假设不为
22、线段的中点,则与是平面内内的相交直线,从而平面,这与矛盾,所以为线段的中点.(2)以为原点,由条件面面,以分别为轴建立空间直角坐标系,则,.设平面的法向量为所以取,则,.同法可求得平面的法向量为,由图知二面角为锐二面角,二面角的余弦值为.【点睛】本题考查了立体几何与空间向量综合,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.22、(1);(2)680元.【解析】(1)根据题意,列方程,然后求解即可(2)根据题意,计算出10000元使用“余额宝”的利息为(元)和10000元使用“财富通”的利息为(元),得到所有可能的取值为560(元),700(元),840(元),然后根据所有可能的取值,计算出相应的概率,并列出的分布列表,然后求解数学期望即可【详解】(1)据题意,得,所以.(2)据,得这被抽取的7人中使用“余额宝”的有4人,使用“财富通”的有3人.10000元使用“余额宝”的利息为(元).10000元使用“财富通”的利息为(元).所有可能的取值为560(元),700(元),840(元).,.的分布列为560700840所以(元).【点睛】本题考查频数分布表以及分布列和数学期望问题,属于基础题