汕头市重点中学2023届高考仿真卷数学试卷含解析.doc

上传人:茅**** 文档编号:88312248 上传时间:2023-04-25 格式:DOC 页数:17 大小:1.75MB
返回 下载 相关 举报
汕头市重点中学2023届高考仿真卷数学试卷含解析.doc_第1页
第1页 / 共17页
汕头市重点中学2023届高考仿真卷数学试卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《汕头市重点中学2023届高考仿真卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《汕头市重点中学2023届高考仿真卷数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1双曲线的渐近线与圆(x3)2y2r2(r0)相切,则r等于()AB2C3D62已知复数满足,且,则( )A3BCD3已知向量,则与的夹角为( )ABCD4已知,是两条不重合的直线,是一个平面,则下列命题中正确的是( )A若,则B若,则C若,则D若,则5复数,若复数在复平面内对应的点关于虚轴对称,则等于( )ABCD6函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是( )ABCD7已知是双曲线的左、右焦点,是的左、右顶点,点在过且斜率为的直线上,为等腰三角形,则的渐近

3、线方程为( )ABCD8等比数列若则( )A6B6C-6D9复数()ABC0D10设集合,则 ()ABCD11定义,已知函数,则函数的最小值为( )ABCD12设,是非零向量,若对于任意的,都有成立,则ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知不等式的解集不是空集,则实数的取值范围是;若不等式对任意实数恒成立,则实数的取值范围是_14根据如图所示的伪代码,输出的值为_.15的展开式中的常数项为_.16已知双曲线的一条渐近线为,则焦点到这条渐近线的距离为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,为等腰直角三角形,D为AC上一点,将沿

4、BD折起,得到三棱锥,且使得在底面BCD的投影E在线段BC上,连接AE. (1)证明:;(2)若,求二面角的余弦值.18(12分)在中,角A,B,C的对边分别是a,b,c,且向量与向量共线.(1)求B;(2)若,且,求BD的长度.19(12分)已知函数,且(1)当时,求函数的减区间;(2)求证:方程有两个不相等的实数根;(3)若方程的两个实数根是,试比较,与的大小,并说明理由20(12分)在ABC中,分别为三个内角A、B、C的对边,且(1)求角A;(2)若且求ABC的面积21(12分)(本小题满分12分)已知椭圆C:的离心率为,连接椭圆四个顶点形成的四边形面积为4(1)求椭圆C的标准方程;(2

5、)过点A(1,0)的直线与椭圆C交于点M, N,设P为椭圆上一点,且O为坐标原点,当时,求t的取值范围22(10分)选修45;不等式选讲已知函数(1)若的解集非空,求实数的取值范围;(2)若正数满足,为(1)中m可取到的最大值,求证:参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由圆心到渐近线的距离等于半径列方程求解即可.【详解】双曲线的渐近线方程为yx,圆心坐标为(3,0)由题意知,圆心到渐近线的距离等于圆的半径r,即r.答案:A【点睛】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.2、C【解析】设

6、,则,利用和求得,即可.【详解】设,则,因为,则,所以,又,即,所以,所以,故选:C【点睛】本题考查复数的乘法法则的应用,考查共轭复数的应用.3、B【解析】由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果.【详解】解:由题意得,设与的夹角为,由于向量夹角范围为:,.故选:B.【点睛】本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.4、D【解析】利用空间位置关系的判断及性质定理进行判断.【详解】解:选项A中直线,还可能相交或异面,选项B中,还可能异面,选项C,由条件可得或故选:D.【点睛】本题主要考查直线与平面平行、垂直的性质与判定等基础知识;考查空间想象能力、推理论证能

7、力,属于基础题.5、A【解析】先通过复数在复平面内对应的点关于虚轴对称,得到,再利用复数的除法求解.【详解】因为复数在复平面内对应的点关于虚轴对称,且复数,所以所以故选:A【点睛】本题主要考查复数的基本运算和几何意义,属于基础题.6、D【解析】由三角函数的周期可得,由函数图像的变换可得, 平移后得到函数解析式为,再求其对称轴方程即可.【详解】解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由,得,当时,.故选D.【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.7、D【解析】根据为等腰三角形,可求出点P的坐标,又由的斜率为可得出关系,即可求出渐近线斜率得解.【详解

8、】如图,因为为等腰三角形,所以,,,又,解得,所以双曲线的渐近线方程为,故选:D【点睛】本题主要考查了双曲线的简单几何性质,属于中档题.8、B【解析】根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【详解】由等比数列中等比中项性质可知,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.9、C【解析】略10、B【解析】直接进行集合的并集、交集的运算即可【详解】解:; 故选:B【点睛】本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题.11、A【解析】根据分段函数的定义得,则,再根据基

9、本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得,则,(当且仅当,即时“”成立.此时,,的最小值为,故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.12、D【解析】画出,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.【详解】由题意,得向量是所有向量中模长最小的向量,如图,当,即时,最小,满足,对于任意的,所以本题答案为D.【点睛】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

10、利用绝对值的几何意义,确定出的最小值,然后根据题意即可得到的取值范围化简不等式,求出 的最大值,然后求出结果【详解】的最小值为,则要使不等式的解集不是空集,则有化简不等式有 ,即而当时满足题意,解得或所以答案为【点睛】本题主要考查的是函数恒成立的问题和绝对值不等式,要注意到绝对值的几何意义,数形结合来解答本题,注意去绝对值时的分类讨论化简14、7【解析】表示初值S=1,i=1,分三次循环计算得S=100,输出i=7.【详解】S=1,i=1第一次循环:S=1+1=2,i=1+2=3;第二次循环:S=2+3=5,i=3+2=5;第三次循环:S=5+5=10,i=5+2=7;S=109,循环结束,输

11、出:i=7.故答案为:7【点睛】本题考查在程序语句的背景下已知输入的循环结构求输出值问题,属于基础题.15、160【解析】先求的展开式中通项,令的指数为3即可求解结论.【详解】解:因为的展开式的通项公式为:;令,可得;的展开式中的常数项为:.故答案为:160.【点睛】本题考查二项式系数的性质,关键是熟记二项展开式的通项,属于基础题16、2.【解析】由双曲线的一条渐近线为,解得求出双曲线的右焦点,利用点到直线的距离公式求解即可【详解】双曲线的一条渐近线为 解得: 双曲线的右焦点为焦点到这条渐近线的距离为:本题正确结果:【点睛】本题考查了双曲线和的标准方程及其性质,涉及到点到直线距离公式的考查,属

12、于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】(1)由折叠过程知与平面垂直,得,再取中点,可证与平面垂直,得,从而可得线面垂直,再得线线垂直;(2)由已知得为中点,以为原点,所在直线为轴,在平面内过作的垂线为轴建立空间直角坐标系,由已知求出线段长,得出各点坐标,用平面的法向量计算二面角的余弦【详解】(1)易知与平面垂直,连接,取中点,连接,由得,平面,平面,又,平面,;(2)由,知是中点,令,则,由,解得,故以为原点,所在直线为轴,在平面内过作的垂线为轴建立空间直角坐标系,如图,则,设平面的法向量为,则,取,则又易知平面的一个法向量为,

13、二面角的余弦值为【点睛】本题考查证明线线垂直,考查用空间向量法求二面角证线线垂直,一般先证线面垂直,而证线面垂直又要证线线垂直,注意线线垂直、线面垂直及面面垂直的转化求空间角,常用方法就是建立空间直角坐标系,用空间向量法求空间角18、(1)(2)【解析】(1)根据共线得到,利用正弦定理化简得到答案.(2)根据余弦定理得到,再利用余弦定理计算得到答案.【详解】(1)与共线,.即,即,.(2),在中,由余弦定理得:,.则或(舍去).,.在中,由余弦定理得:,.【点睛】本题考查了向量共线,正弦定理,余弦定理,意在考查学生的综合应用能力.19、(1)(2)详见解析(3)【解析】试题分析:(1)当时,由

14、得减区间;(2)因为,所以,因为所以,方程有两个不相等的实数根;(3)因为,所以试题解析:(1)当时,由得减区间; (2)法1:, 所以,方程有两个不相等的实数根; 法2:, ,是开口向上的二次函数,所以,方程有两个不相等的实数根; (3)因为, , 又在和增,在减,所以 考点:利用导数求函数减区间,二次函数与二次方程关系20、(1); (2).【解析】(1)整理得:,再由余弦定理可得,问题得解(2)由正弦定理得:,再代入即可得解【详解】(1)由题意,得,;(2)由正弦定理,得,,.【点睛】本题主要考查了正、余弦定理及三角形面积公式,考查了转化思想及化简能力,属于基础题21、(1);(2)【解

15、析】试题分析:本题主要考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力第一问,先利用离心率、四边形的面积列出方程,解出a和b的值,从而得到椭圆的标准方程;第二问,讨论直线MN的斜率是否存在,当直线MN的斜率存在时,直线方程与椭圆方程联立,消参,利用韦达定理,得到、,利用列出方程,解出,代入到椭圆上,得到的值,再利用,计算出的范围,代入到的表达式中,得到t的取值范围试题解析:(1),即又,椭圆C的标准方程为(2)由题意知,当直线MN斜率存在时,设直线方程为,联立方程消去y得,因为直线与椭圆交于两点,所以恒成立,又,因为点P在椭圆

16、上,所以,即,又,即,整理得:,化简得:,解得或(舍),即当直线MN的斜率不存在时,此时,考点:椭圆的标准方程及其几何性质、直线与椭圆的位置关系22、 (1);(2)见解析.【解析】试题分析:(1)讨论三种情况去绝对值符号,可得所以,由此得,解得;(2)利用分析法,由(1)知,所以,因为,要证,只需证,即证,只需证 即可得结果.试题解析:(1)去绝对值符号,可得所以,所以,解得,所以实数的取值范围为(2)由(1)知,所以因为,所以要证,只需证,即证,即证.因为,所以只需证,因为,成立,所以解法二:x2+y2=2,x、yR+,x+y2xy 设:证明:x+y-2xy= =令, 原式= = = = 当时,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁