《汕头市重点中学2023届中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《汕头市重点中学2023届中考数学对点突破模拟试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为()ABCD2圆锥的底面直径是80cm,母线长90cm,则它的侧面积是ABCD3正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为( )A8BCD4如图,正方形ABCD中,对角线AC、BD交于点O,BAC的平分线交BD于E,交BC于F,BHAF于H,交AC于G,交CD于P,连接GE、GF,以下结论:OAEOBG;四边形BEGF是菱形;BECG;1;SPB
3、C:SAFC1:2,其中正确的有()个A2B3C4D55如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s和v(m/s),起初甲车在乙 车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶设x(s)后两车相距y (m),y与x的函数关系如图2所示有以下结论:图1中a的值为500;乙车的速度为35 m/s;图1中线段EF应表示为;图2中函数图象与x轴交点的横坐标为1其中所有的正确结论是( )ABCD6如图所示,的顶点是正方形网格的格点,则的值为()ABCD7下面调查中,适合采用全面调查的是()A对南宁市市民进行“南宁地铁1号线线路”B对你安宁市食品安全合格情况的调查C对南宁
4、市电视台新闻在线收视率的调查D对你所在的班级同学的身高情况的调查8青藏高原是世界上海拔最高的高原,它的面积是 2500000 平方千米将 2500000 用科学记数法表示应为( )ABCD9下列运算正确的是( )A4x+5y=9xyB(m)3m7=m10C(x3y)5=x8y5Da12a8=a410有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:40m+10=43m1;40m+10=43m+1,其中正确的是()ABCD11若抛物线yx23x+c与y轴的交点为(0,2),则下列说法正确的是()A抛物线开口向下B抛物线与x轴的交
5、点为(1,0),(3,0)C当x1时,y有最大值为0D抛物线的对称轴是直线x12若O的半径为5cm,OA=4cm,则点A与O的位置关系是( )A点A在O内B点A在O上C点A在O外D内含二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,CD是RtABC斜边AB上的高,将BCD沿CD折叠,B点恰好落在AB的中点E处,则A等于_度14用一个圆心角为120,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为_15如图,将矩形ABCD绕点C沿顺时针方向旋转90到矩形ABCD的位置,AB2,AD4,则阴影部分的面积为_16某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这
6、种水果,应找回 元(用含a的代数式表示)17已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中小球的总个数是_18分解因式2x24x+2的最终结果是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=(k0)的图象经过点B求反比例函数的解析式;若点E恰好落在反比例函数y=上,求平行四边形OBDC的面积20(6分)如图,ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17
7、,求ABC的面积21(6分)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长22(8分)计算:23(8分)A,B两地相距20km甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发设甲的骑行时间为x(h)(0x2)(1)根据题意,填写下表:时间x(h)与A地的距离0.51.8 _甲与A地的距离(km)5 20乙与A地的距离(km)012 (2)设甲,乙两人与A地的距离为y1(km)和y2(
8、km),写出y1,y2关于x的函数解析式;(3)设甲,乙两人之间的距离为y,当y=12时,求x的值24(10分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程在科研所到宿舍楼之间修一条高科技的道路;对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为yax+b(0x3)当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w防辐射费+修路费(1)当科研所到宿舍楼的距离x3km时,防辐射费y_万元
9、,a_,b_;(2)若m90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km,求m的范围?25(10分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示)请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出
10、她与嘉嘉抽到勾股数的可能性一样吗?26(12分)M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?27(12分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转
11、盘一次,求转出的数字是2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】设黄球有x个,根据摸出一个球是蓝球的概率是,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率【详解】解:设袋子中黄球有x个,根据题意,得:,解得:x=3,即袋中黄球有3个,所以随机摸出一个黄球的概率为,故选A【点睛】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比得到所求的情况数是解决本题的关键2、D【解析】圆锥的侧面积=80
12、90=3600(cm2) .故选D3、D【解析】根据正方形的边长,根据勾股定理求出AR,求出ABRDRS,求出DS,根据面积公式求出即可【详解】正方形ABCD的面积为16,正方形BPQR面积为25,正方形ABCD的边长为4,正方形BPQR的边长为5,在RtABR中,AB=4,BR=5,由勾股定理得:AR=3,四边形ABCD是正方形,A=D=BRQ=90,ABR+ARB=90,ARB+DRS=90,ABR=DRS,A=D,ABRDRS,DS=,阴影部分的面积S=S正方形ABCD-SABR-SRDS=44-43-1=,故选:D【点睛】本题考查了正方形的性质,相似三角形的性质和判定,能求出ABR和R
13、DS的面积是解此题的关键4、C【解析】根据AF是BAC的平分线,BHAF,可证AF为BG的垂直平分线,然后再根据正方形内角及角平分线进行角度转换证明EGEB,FGFB,即可判定选项;设OAOBOCa,菱形BEGF的边长为b,由四边形BEGF是菱形转换得到CFGFBF,由四边形ABCD是正方形和角度转换证明OAEOBG,即可判定;则GOE是等腰直角三角形,得到GEOG,整理得出a,b的关系式,再由PGCBGA,得到1+,从而判断得出;得出EABGBC从而证明EABGBC,即可判定;证明FABPBC得到BFCP,即可求出,从而判断.【详解】解:AF是BAC的平分线,GAHBAH,BHAF,AHGA
14、HB90,在AHG和AHB中,AHGAHB(ASA),GHBH,AF是线段BG的垂直平分线,EGEB,FGFB,四边形ABCD是正方形,BAFCAF4522.5,ABE45,ABF90,BEFBAF+ABE67.5,BFE90BAF67.5,BEFBFE,EBFB,EGEBFBFG,四边形BEGF是菱形;正确;设OAOBOCa,菱形BEGF的边长为b,四边形BEGF是菱形,GFOB,CGFCOB90,GFCGCF45,CGGFb,CGF90,CFGFBF,四边形ABCD是正方形,OAOB,AOEBOG90,BHAF,GAH+AGH90OBG+AGH,OAEOBG,在OAE和OBG中,OAEOB
15、G(ASA),正确;OGOEab,GOE是等腰直角三角形,GEOG,b(ab),整理得ab,AC2a(2+)b,AGACCG(1+)b,四边形ABCD是正方形,PCAB,1+,OAEOBG,AEBG,1+,1,正确;OAEOBG,CABDBC45,EABGBC,在EAB和GBC中,EABGBC(ASA),BECG,正确;在FAB和PBC中,FABPBC(ASA),BFCP,错误;综上所述,正确的有4个,故选:C【点睛】本题综合考查了全等三角形的判定与性质,相似三角形,菱形的判定与性质等四边形的综合题该题难度较大,需要学生对有关于四边形的性质的知识有一系统的掌握5、A【解析】分析:根据图象2得出
16、结论; 根据(75,125)可知:75秒时,两车的距离为125m,列方程可得结论; 根据图1,线段的和与差可表示EF的长;利用待定系数法求直线的解析式,令y=0可得结论.详解:y是两车的距离,所以根据图2可知:图1中a的值为500,此选项正确;由题意得:7520+500-75y=125,v=25,则乙车的速度为25m/s,故此选项不正确;图1中:EF=a+20x-vx=500+20x-25x=500-5x.故此选项不正确;设图2的解析式为:y=kx+b,把(0,500)和(75,125)代入得: ,解得 ,y=-5x+500,当y=0时,-5x+500=0,x=1,即图2中函数图象与x轴交点的
17、横坐标为1,此选项正确;其中所有的正确结论是;故选A.点睛:本题考查了一次函数的应用,根据函数图象,读懂题目信息,理解两车间的距离与时间的关系是解题的关键.6、B【解析】连接CD,求出CDAB,根据勾股定理求出AC,在RtADC中,根据锐角三角函数定义求出即可【详解】解:连接CD(如图所示),设小正方形的边长为,BD=CD=,DBC=DCB=45,在中,则故选B【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形7、D【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答【详解】A、对
18、南宁市市民进行“南宁地铁1号线线路”适宜采用抽样调查方式;B、对你安宁市食品安全合格情况的调查适宜采用抽样调查方式;C、对南宁市电视台新闻在线收视率的调查适宜采用抽样调查方式;D、对你所在的班级同学的身高情况的调查适宜采用普查方式;故选D【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查8、C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便解答:解:根据题意:25000
19、00=2.51故选C9、D【解析】各式计算得到结果,即可作出判断【详解】解:A、4x+5y=4x+5y,错误;B、(-m)3m7=-m10,错误;C、(x3y)5=x15y5,错误;D、a12a8=a4,正确;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键10、D【解析】试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案解:根据总人数列方程,应是40m+10=43m+1,错误,正确;根据客车数列方程,应该为,错误,正确;所以正确的是故选D考点:由实际问题抽象出一元一次方程11、D【解析】A、由a=10,可得出抛物线开口向
20、上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确综上即可得出结论【详解】解:A、a=10,抛物线开口向上,A选项错误;B、抛物线y=x1-3x+c与y轴的交点为(0,1),c=1,抛物线的解析式为y=x1-3x+1当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、抛物线开口
21、向上,y无最大值,C选项错误;D、抛物线的解析式为y=x1-3x+1,抛物线的对称轴为直线x=-=-=,D选项正确故选D【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键12、A【解析】直接利用点与圆的位置关系进而得出答案【详解】解:O的半径为5cm,OA=4cm,点A与O的位置关系是:点A在O内故选A【点睛】此题主要考查了点与圆的位置关系,正确点P在圆外dr,点P在圆上d=r,点P在圆内dr是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、30
22、【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则A=30.考点:折叠图形的性质14、【解析】试题分析:,解得r=考点:弧长的计算15、【解析】试题解析:连接 四边形ABCD是矩形, CE=BC=4,CE=2CD, 由勾股定理得: 阴影部分的面积是S=S扇形CEBSCDE 故答案为16、(50-3a).【解析】试题解析:购买这种售价是每千克a元的水果3千克需3a元,根据题意,应找回(50-3a)元考点:列代数式.17、8个【解析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数【详解】袋中小球的总个数是:2=
23、8(个)故答案为8个【点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键18、1(x1)1【解析】先提取公因式1,再根据完全平方公式进行二次分解【详解】解:1x1-4x+1,=1(x1-1x+1),=1(x-1)1故答案为:1(x1)1【点睛】本题考查提公因式法与公式法的综合运用,难度不大三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)y=;(2)1;【解析】(1)把点B的坐标代入反比例解析式求得k值,即可求得反比例函数的解析式;(2)根据点B(3,4)、C(m,0)的坐标求得边BC的中点E坐标为(,2),将点E的坐标代入反比例函数的解
24、析式求得m的值,根据平行四边形的面积公式即可求解.【详解】(1)把B坐标代入反比例解析式得:k=12,则反比例函数解析式为y=; (2)B(3,4),C(m,0),边BC的中点E坐标为(,2),将点E的坐标代入反比例函数得2=,解得:m=9,则平行四边形OBCD的面积=94=1【点睛】本题为反比例函数的综合应用,考查的知识点有待定系数法、平行四边形的性质、中点的求法在(1)中注意待定系数法的应用,在(2)中用m表示出E点的坐标是解题的关键20、3【解析】试题分析:根据AB=30,BD=6,AD=8,利用勾股定理的逆定理求证ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即
25、可得出答案试题解析:BD3+AD3=63+83=303=AB3,ABD是直角三角形,ADBC,在RtACD中,CD=,SABC=BCAD=(BD+CD)AD=338=3,因此ABC的面积为3答:ABC的面积是3考点:3勾股定理的逆定理;3勾股定理21、(1)ab4x1(1)【解析】(1)边长为x的正方形面积为x1,矩形面积减去4个小正方形的面积即可(1)依据剪去部分的面积等于剩余部分的面积,列方程求出x的值即可【详解】解:(1)ab4x1(1)依题意有:,将a=6,b=4,代入上式,得x1=2解得x1=,x1=(舍去)正方形的边长为22、-1【解析】先化简二次根式、计算负整数指数幂、分母有理化
26、、去绝对值符号,再合并同类二次根式即可得【详解】原式=14+1=1【点睛】本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.23、(1)18,2,20(2)(3)当y=12时,x的值是1.2或1.6【解析】()根据路程、时间、速度三者间的关系通过计算即可求得相应答案;()根据路程=速度时间结合甲、乙的速度以及时间范围即可求得答案;()根据题意,得,然后分别将y=12代入即可求得答案.【详解】()由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发,当时间x=1.8 时,甲离开A的距离是101.
27、8=18(km),当甲离开A的距离20km时,甲的行驶时间是2010=2(时),此时乙行驶的时间是21.5=0. 5(时),所以乙离开A的距离是400.5=20(km),故填写下表:()由题意知:y1=10x(0x1.5),y2=;()根据题意,得,当0x1.5时,由10x=12,得x=1.2,当1.5x2时,由30x+60=12,得x=1.6,因此,当y=12时,x的值是1.2或1.6.【点睛】本题考查了一次函数的应用,理清题意,弄清各数量间的关系是解题的关键.24、 (1)0,360,101;(2)当距离为2公里时,配套工程费用最少;(3)0m1【解析】(1)当x1时,y720,当x3时,
28、y0,将x、y代入yax+b,即可求解;(2)根据题目:配套工程费w防辐射费+修路费分0x3和x3时讨论.当0x3时,配套工程费W90x2360x+101,当x3时,W90x2,分别求最小值即可;(3)0x3,Wmx2360x+101,(m0),其对称轴x,然后讨论:x=3时和x3时两种情况m取值即可求解【详解】解:(1)当x1时,y720,当x3时,y0,将x、y代入yax+b,解得:a360,b101,故答案为0,360,101;(2)当0x3时,配套工程费W90x2360x+101,当x2时,Wmin720;当x3时,W90x2,W随x最大而最大,当x3时,Wmin810720,当距离为
29、2公里时,配套工程费用最少;(3)0x3,Wmx2360x+101,(m0),其对称轴x,当x3时,即:m60,Wminm()2360()+101,Wmin675,解得:60m1;当x3时,即m60,当x3时,Wmin9m675,解得:0m60,故:0m1【点睛】本题考查了二次函数的性质在实际生活中的应用最值问题常利函数的增减性来解答25、(1);(2)淇淇与嘉嘉抽到勾股数的可能性不一样【解析】试题分析:(1)根据等可能事件的概率的定义,分别确定总的可能性和是勾股数的情况的个数;(2)用列表法列举出所有的情况和两张卡片上的数都是勾股数的情况即可.试题解析:(1)嘉嘉随机抽取一张卡片共出现4种等
30、可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=;(2)列表法:ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,P2=,P1=,P2=,P1P2淇淇与嘉嘉抽到勾股数的可能性不一样26、购买了桂花树苗1棵【解析】分析:首先设购买了桂花树苗x棵,然后根据题意列出一元一次方程,从而得出答案详解:设购买了桂花树苗x棵,根据题意,得:5(x+11-1)=6(x-1), 解
31、得x=1答:购买了桂花树苗1棵点睛:本题主要考查的是一元一次方程的应用,属于基础题型解决这个问题的关键就是找出等量关系以及路的长度与树的棵树之间的关系27、(1);(2).【解析】【分析】(1)根据题意可求得2个“2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120,所以2个“2”所占的扇形圆心角为3602120120,转动转盘一次,求转出的数字是2的概率为;(2)由(1)可知,该转盘转出“1”、“3”、“2”的概率相同,均为,所有可能性如下表所示:第一次 第二次1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比