《河南省漯河市临颍县重点达标名校2023年中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《河南省漯河市临颍县重点达标名校2023年中考数学最后冲刺模拟试卷含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1某商品价格为元,降价10后,又降价10,因销售量猛增,商店决定再提价20,提价后这种商品的价格为( )A0.96元B0.972元C1.08元D元2已知点 A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k0)的图象上,若x1x
2、20x3,则y1,y2,y3的大小关系是()Ay1y2y3 By2y1y3 Cy3y2y1 Dy3y1y23如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:AEDDFB;S四边形 BCDG=CG2;若AF=2DF,则BG=6GF,其中正确的结论A只有.B只有.C只有.D.4如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是()ABCD5如图,O内切于正方形ABCD,边BC、DC上两点M、N,且MN是O的切线,当AMN的面积为4时,则O的半径r是()AB2C2D46如图,在RtABC中,ACB=
3、90,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将 绕点D旋转180后点B与点A恰好重合,则图中阴影部分的面积为()ABCD7下列美丽的壮锦图案是中心对称图形的是()ABCD8如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是ABCD9下列说法正确的是( )A掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是,则甲的射击成绩较稳定C“明天降雨的概率为”,表示明天有半天都在降雨D了解一批电视机的使用寿命,适合用普查的方式10在O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A3
4、B4C5D611已知是二元一次方程组的解,则的算术平方根为( )A2BC2D412在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A中位数是9B众数为16C平均分为7.78D方差为2二、填空题:(本大题共6个小题,每小题4分,共24分)13我国古代数学著作九章算术卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱问有多少人,物品的价格是多少?设有人,则可列方程为_14已知一组数据x1,x2,x3,x4,x5的平均数是3,则另一组新数据x1
5、+1,x2+2,x3+3,x4+4,x5+5的平均数是_15为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()ABCD16如图,在55的正方形(每个小正方形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接_. (写出一个答案即可)17如图,在菱形ABCD中,DEAB于点E,cosA=,BE=4,则tanDBE的值是_18如图,BP是ABC中ABC的平分线,CP是ACB的外角的平分线,如果ABP=20,ACP=50,则P=_三、解答题:(本大题共9个
6、小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率20(6分)对于平面直角坐标系xOy中的点P和直线m,给出如下定
7、义:若存在一点P,使得点P到直线m的距离等于1,则称P为直线m的平行点(1)当直线m的表达式为yx时,在点,中,直线m的平行点是_;O的半径为,点Q在O上,若点Q为直线m的平行点,求点Q的坐标(2)点A的坐标为(n,0),A半径等于1,若A上存在直线的平行点,直接写出n的取值范围21(6分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函
8、数是反比例函数(k0),它的图象的伴侣正方形为ABCD,点D(2,m)(m2)在反比例函数图象上,求m的值及反比例函数解析式;(3)若某函数是二次函数y=ax2+c(a0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4)写出伴侣正方形在抛物线上的另一个顶点坐标_,写出符合题意的其中一条抛物线解析式_,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?_(本小题只需直接写出答案)22(8分)如图,点是反比例函数与一次函数在轴上方的图象的交点,过点作轴,垂足是点,一次函数的图象与轴的正半轴交于点求点的坐标;若梯形的面积是3,求一次函数的解析式;结合这两个函数的完整图象:当时,
9、写出的取值范围23(8分)如图,点,在上,直线是的切线,连接交于(1)求证:(2)若,的半径为,求的长24(10分)计算:(1)20182+|1|+3tan3025(10分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使CAD30,CBD60求AB的长(结果保留根号);已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由(参考数据:1.7,1.4)26
10、(12分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式求机场大巴与货车相遇地到机场C的路程27(12分)已知反比例函数的图象经过三个点A(4,3),B(2m,y1),C(6m,y2),其中m1(1)当y1y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角
11、形PBD的面积是8,请写出点P坐标(不需要写解答过程)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】提价后这种商品的价格=原价(1-降低的百分比)(1-百分比)(1+增长的百分比),把相关数值代入求值即可【详解】第一次降价后的价格为a(1-10%)=0.9a元,第二次降价后的价格为0.9a(1-10%)=0.81a元,提价20%的价格为0.81a(1+20%)=0.972a元,故选B【点睛】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决
12、本题的关键2、D【解析】试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1x20x3,y3y1y2;故选D.考点:反比例函数的性质.3、D【解析】解:ABCD为菱形,AB=ADAB=BD,ABD为等边三角形A=BDF=60又AE=DF,AD=BD,AEDDFB;BGE=BDG+DBF=BDG+GDF=60=BCD,即BGD+BCD=180,点B、C、D、G四点共圆,BGC=BDC=60,DGC=DBC=60 BGC=DGC=60过点C作CMGB于M,CNGD于NCM=CN,则CBMCDN,
13、(HL)S四边形BCDG=S四边形CMGNS四边形CMGN=1SCMG,CGM=60,GM=CG,CM=CG,S四边形CMGN=1SCMG=1CGCG=CG1过点F作FPAE于P点 AF=1FD,FP:AE=DF:DA=1:3,AE=DF,AB=AD,BE=1AE,FP:BE=1:6=FG:BG,即 BG=6GF故选D4、C【解析】分析:估计的大小,进而在数轴上找到相应的位置,即可得到答案.详解:由被开方数越大算术平方根越大,即故选C.点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估计的大小.5、C【解析】连接,交于点设则根据AMN的面积为4,列出方程求出的值,再计
14、算半径即可.【详解】连接,交于点 内切于正方形 为的切线,经过点 为等腰直角三角形, 为的切线, 设则 AMN的面积为4,则 即解得 故选:C.【点睛】考查圆的切线的性质,等腰直角三角形的性质,三角形的面积公式,综合性比较强.6、B【解析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可【详解】解:由旋转可知AD=BD,ACB=90,AC=2,CD=BD,CB=CD,BCD是等边三角形,BCD=CBD=60,BC=AC=2,阴影部分的面积=222=2.故选:B.【点睛】本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算.7、A【解析】【分析】根
15、据中心对称图形的定义逐项进行判断即可得.【详解】A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选A【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.8、D【解析】由圆锥的俯视图可快速得出答案.【详解】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.【点睛】本题考查立体图形的三视图
16、,熟记基本立体图的三视图是解题的关键.9、B【解析】利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断【详解】解: A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;C、“明天降雨的概率为”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;故选B【点睛】本题考查方差;全面调查与抽样调查;随机事件;概率的意义,掌握基本概念是解题关键10、A【解析】解:作OCAB于C,连结OA
17、,如图OCAB,AC=BC=AB=8=1在RtAOC中,OA=5,OC=,即圆心O到AB的距离为2故选A11、C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根【分析】是二元一次方程组的解,解得即的算术平方根为1故选C12、A【解析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1故选A【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据每人出8钱,则剩余3钱;如果每人
18、出7钱,则差4钱,可以列出相应的方程,本题得以解决【详解】解:由题意可设有人,列出方程: 故答案为【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程14、1【解析】根据平均数的性质知,要求x1+1,x2+2,x3+3,x4+4、x5+5的平均数,只要把数x1、x2、x3、x4、x5的和表示出即可【详解】数据x1,x2,x3,x4,x5的平均数是3,x1+x2+x3+x4+x5=15,则新数据的平均数为=1,故答案为:1【点睛】本题考查的是样本平均数的求法解决本题的关键是用一组数据的平均数表示另一组数据的平均数15、A【解析】该班男生有x人,女生有y人根据题意
19、得:,故选D考点:由实际问题抽象出二元一次方程组16、答案不唯一,如:AD【解析】根据勾股定理求出,根据无理数的估算方法解答即可【详解】由勾股定理得:,故答案为答案不唯一,如:AD【点睛】本题考查了无理数的估算和勾股定理,如果直角三角形的两条直角边长分别是,斜边长为,那么17、1【解析】求出AD=AB,设AD=AB=5x,AE=3x,则5x3x=4,求出x,得出AD=10,AE=6,在RtADE中,由勾股定理求出DE=8,在RtBDE中得出代入求出即可,【详解】解:四边形ABCD是菱形,AD=AB,cosA=,BE=4,DEAB,设AD=AB=5x,AE=3x,则5x3x=4,x=1,即AD=
20、10,AE=6,在RtADE中,由勾股定理得: 在RtBDE中,故答案为:1【点睛】本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE的长18、30【解析】根据角平分线的定义可得PBC=20,PCM=50,根据三角形外角性质即可求出P的度数.【详解】BP是ABC的平分线,CP是ACM的平分线,ABP=20,ACP=50,PBC=20,PCM=50,PBC+P=PCM,P=PCM-PBC=50-20=30,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.三、解答题:(本大题共9个小题,共7
21、8分,解答应写出文字说明、证明过程或演算步骤19、(1)50人;(2)补图见解析;(3). 【解析】分析:(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得详解:(1)该班学生总数为1020%=50人;(2)历史学科的人数为50(5+10+15+6+6)=8人,补全图形如下:(3)列表如下:化学生物政治历史地理化学生物、化学政治、化学历史、化学地理、化学生物化学、生物政治、生物历史、生物地理、生物政治化学、政治生物、政治历史、政治地理、政治历史化学、历
22、史生物、历史政治、历史地理、历史地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率20、(1),;,;(2)【解析】(1)根据平行点的定义即可判断;分两种情形:如图1,当点B在原点上方时,作OHAB于点H,可知OH=1.如图2,当点B在原点下方时,同法可求;(2)如图,直线OE的解析式为,设直线BC/OE交x轴于C,作CDOE于D. 设
23、A与直线BC相切于点F,想办法求出点A的坐标,再根据对称性求出左侧点A的坐标即可解决问题;【详解】解:(1)因为P2、P3到直线yx的距离为1,所以根据平行点的定义可知,直线m的平行点是,故答案为,解:由题意可知,直线m的所有平行点组成平行于直线m,且到直线m的距离为1的直线设该直线与x轴交于点A,与y轴交于点B如图1,当点B在原点上方时,作OHAB于点H,可知OH1由直线m的表达式为yx,可知OABOBA45所以直线AB与O的交点即为满足条件的点Q连接,作轴于点N,可知在中,可求所以在中,可求所以所以点的坐标为同理可求点的坐标为如图2,当点B在原点下方时,可求点的坐标为点的坐标为,综上所述,
24、点Q的坐标为,(2)如图,直线OE的解析式为,设直线BCOE交x轴于C,作CDOE于D当CD1时,在RtCOD中,COD60,设A与直线BC相切于点F,在RtACE中,同法可得,根据对称性可知,当A在y轴左侧时,观察图象可知满足条件的N的值为:【点睛】此题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题21、(1);(2);(3)(1,3);(7,3);(4,7);(4,1),对应的抛物线分别为 ; ;,偶数.【解析】(1)设正方形ABCD的边长为a,当点A在x轴负半轴、点B在y轴正半
25、轴上时,可知3a=,求出a,(2)作DE、CF分别垂直于x、y轴,可知ADEBAOCBF,列出m的等式解出m,(3)本问的抛物线解析式不止一个,求出其中一个【详解】解:(1)正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形当点A在x轴正半轴、点B在y轴负半轴上时,AO=1,BO=1,正方形ABCD的边长为 ,当点A在x轴负半轴、点B在y轴正半轴上时,设正方形的边长为a,得3a=, ,所以伴侣正方形的边长为或;(2)作DE、CF分别垂直于x、y轴,知ADEBAOCBF,此时,m2,DE=OA=BF=mOB=CF=AE=2mOF=BF+OB=2C点坐标为(2m,2),2m=2(2m)解得
26、m=1,反比例函数的解析式为y= ,(3)根据题意画出图形,如图所示:过C作CFx轴,垂足为F,过D作DECF,垂足为E,CEDDGBAOBAFC,C(3,4),即CF=4,OF=3,EG=3,DE=4,故DG=DEGE=DEOF=43=1,则D坐标为(1,3);设过D与C的抛物线的解析式为:y=ax2+b,把D和C的坐标代入得: ,解得 ,满足题意的抛物线的解析式为y=x2+ ;同理可得D的坐标可以为:(7,3);(4,7);(4,1),;对应的抛物线分别为 ; ;,所求的任何抛物线的伴侣正方形个数为偶数.【点睛】本题考查了二次函数的综合题.灵活运用相关知识是解题关键.22、(1)点的坐标为
27、;(2);(3)或【解析】(1)点A在反比例函数上,轴,求坐标;(2)梯形面积,求出B点坐标,将点代入 即可;(3)结合图象直接可求解;【详解】解:(1)点在的图像上,轴,点的坐标为;(2)梯形的面积是3,解得,点的坐标为,把点与代入得解得:,一次函数的解析式为(3)由题意可知,作出函数和函数图像如下图所示:设函数和函数的另一个交点为E,联立 ,得 点E的坐标为 即 的函数图像要在的函数图像上面,可将图像分割成如下图所示:由图像可知所对应的自变量的取值范围为:或【点睛】本题考查反比例函数和一次函数的图形及性质;能够熟练掌握待定系数法求函数的表达式,数形结合求的取值范围是解题的关键23、(1)证
28、明见解析;(2)1【解析】(1)连结OA,由AC为圆的切线,利用切线的性质得到OAC为直角,再由,得到BOC为直角,由OA=OB得到,再利用对顶角相等及等角的余角相等得到,利用等角对等边即可得证;(2)在中,利用勾股定理即可求出OC,由OC=OD+DC,DC=AC,即可求得OD的长【详解】(1)如图,连接,切于,又,在中:,又,;(2)在中:, ,由勾股定理得:,由(1)得:,【点睛】此题考查了切线的性质、勾股定理、等腰三角形的判定与性质,熟练掌握切线的性质是解本题的关键24、6+2【解析】分析:直接利用二次根式的性质以及绝对值的性质和特殊角的三角函数值分别化简求出答案详解:原式=16+1+3
29、=5+1+=6+2点睛:此题主要考查了实数运算,正确化简各数是解题关键25、 (1) ;(2)此校车在AB路段超速,理由见解析.【解析】(1)结合三角函数的计算公式,列出等式,分别计算AD和BD的长度,计算结果,即可(2)在第一问的基础上,结合时间关系,计算速度,判断,即可【详解】解:(1)由题意得,在RtADC中,tan30,解得AD24在 RtBDC 中,tan60,解得BD8所以ABADBD24816(米)(2)汽车从A到B用时1.5秒,所以速度为161.518.1(米/秒),因为18.1(米/秒)65.2千米/时45千米/时,所以此校车在AB路段超速【点睛】考查三角函数计算公式,考查速
30、度计算方法,关键利用正切值计算方法,计算结果,难度中等26、(1)连接A、B两市公路的路程为80km,货车由B市到达A市所需时间为h;(2)y=80x+60(0x);(3)机场大巴与货车相遇地到机场C的路程为km【解析】(1)根据可求出连接A、B两市公路的路程,再根据货车h行驶20km可求出货车行驶60km所需时间;(2)根据函数图象上点的坐标,利用待定系数法即可求出机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式;(3)利用待定系数法求出线段ED对应的函数表达式,联立两函数表达式成方程组,通过解方程组可求出机场大巴与货车相遇地到机场C的路程【详解】解:(1)60+20=80
31、(km),(h)连接A.B两市公路的路程为80km,货车由B市到达A市所需时间为h(2)设所求函数表达式为y=kx+b(k0),将点(0,60)、代入y=kx+b,得: 解得: 机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式为(3)设线段ED对应的函数表达式为y=mx+n(m0)将点代入y=mx+n,得: 解得: 线段ED对应的函数表达式为解方程组得 机场大巴与货车相遇地到机场C的路程为km【点睛】本题考查一次函数的应用,掌握待定系数法求函数关系式是解题的关键,本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心27、(1)m=1;(2)点P坐标为(2m,1
32、)或(6m,1)【解析】(1)先根据反比例函数的图象经过点A(4,3),利用待定系数法求出反比例函数的解析式为y=,再由反比例函数图象上点的坐标特征得出y1=,y2=,然后根据y1y2=4列出方程=4,解方程即可求出m的值;(2)设BD与x轴交于点E根据三角形PBD的面积是8列出方程PE=8,求出PE=4m,再由E(2m,1),点P在x轴上,即可求出点P的坐标【详解】解:(1)设反比例函数的解析式为y=,反比例函数的图象经过点A(4,3),k=4(3)=12,反比例函数的解析式为y=,反比例函数的图象经过点B(2m,y1),C(6m,y2),y1=,y2=,y1y2=4,=4,m=1,经检验,m=1是原方程的解,故m的值是1;(2)设BD与x轴交于点E,点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,D(2m,),BD=,三角形PBD的面积是8,BDPE=8,PE=8,PE=4m,E(2m,1),点P在x轴上,点P坐标为(2m,1)或(6m,1)【点睛】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键