江苏省泰州市部分地区重点达标名校2023年中考数学最后冲刺模拟试卷含解析.doc

上传人:茅**** 文档编号:88304597 上传时间:2023-04-25 格式:DOC 页数:18 大小:756.50KB
返回 下载 相关 举报
江苏省泰州市部分地区重点达标名校2023年中考数学最后冲刺模拟试卷含解析.doc_第1页
第1页 / 共18页
江苏省泰州市部分地区重点达标名校2023年中考数学最后冲刺模拟试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《江苏省泰州市部分地区重点达标名校2023年中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省泰州市部分地区重点达标名校2023年中考数学最后冲刺模拟试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,ABC中,AB=4,BC=6,B=60,将ABC沿射线BC的方向平移,得到ABC,再将ABC绕点A逆时针旋转一定角度后,点B恰好与点C重合,则平移的距离和旋转角的度数分别为( )A4,30B2,60C1,30D3,602下列运算正确的是( )

2、ABCD3如图,为的直径,为上两点,若,则的大小为()A60B50C40D204一组数据1,2,3,3,4,1若添加一个数据3,则下列统计量中,发生变化的是()A平均数B众数C中位数D方差5点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1x20x3,则y1,y2,y3的大小关系是()Ay1y2y3By2y3y1Cy3y2y1Dy2y1y36二次函数yax2+bx+c(a0)和正比例函数yx的图象如图所示,则方程ax2+(b+ )x+c0(a0)的两根之和()A大于0B等于0C小于0D不能确定7下列图形中为正方体的平面展开图的是()ABCD8如图,ABC中

3、,BC4,P与ABC的边或边的延长线相切若P半径为2,ABC的面积为5,则ABC的周长为( )A8B10C13D149已知关于x的一元二次方程mx22x1=0有两个不相等的实数根,则m的取值范围是( ).Am1且m0Bm1且m0Cm1Dm110下列运算正确的是()A3a+a=4aB3x22x=6x2C4a25a2=a2D(2x3)22x2=2x411如图,两个一次函数图象的交点坐标为,则关于x,y的方程组的解为( ) ABCD12为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测

4、运动员的越野进程,其中一位运动员P从点B出发,沿着BED的路线匀速行进,到达点D设运动员P的运动时间为t,到监测点的距离为y现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A监测点AB监测点BC监测点CD监测点D二、填空题:(本大题共6个小题,每小题4分,共24分)13孙子算经是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈10尺,1尺10寸),则竹竿的长

5、为_14中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数如图,根据刘徽的这种表示法,观察图,可推算图中所得的数值为_15计算:2a(2b)=_16同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.1组12组13组14组15组16组17组18组盖面朝上次数16533548363280194911221276盖面朝上频率0.5500.5580.5370.5270.5340.5270.5340.532根据实验,你认为这一型号的瓶盖盖

6、面朝上的概率为_,理由是:_.17在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是_.18若实数a、b在数轴上的位置如图所示,则代数式|ba|+化简为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”

7、的学生成绩统计表:“祖冲之奖”的学生成绩统计表:分数/分80859095人数/人42104根据图表中的信息,解答下列问题:(1)这次获得“刘徽奖”的人数是_,并将条形统计图补充完整;(2)获得“祖冲之奖”的学生成绩的中位数是_分,众数是_分;(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“2”,“1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y)用列表法或树状图法求这个点在第二象限的概率20(6分)博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开

8、帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m旗杆DB的长度为2m,DB与墙面AB的夹角DBG为35当会旗展开时,如图所示,(1)求DF的长;(2)求点E到墙壁AB所在直线的距离(结果精确到0.1m参考数据:sin350.57,cos350.82,tan350.70)21(6分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台 求甲、乙两种品牌空调的进货价; 该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售

9、,其中甲种品牌空调的售价为2500元台,乙种品牌空调的售价为3500元台请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润22(8分)某市飞翔航模小队,计划购进一批无人机已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元(1)求一台A型无人机和一台B型无人机的售价各是多少元?(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍设购进A型无人机x台,总费用为y元求y与x的关系式;购进A型、B型无人机各多少台,才能使总费用最少?23(8分)计算:22+|14sin60|24(10分

10、)某商店经营儿童益智玩具,已知成批购进时的单价是20元调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元求y与x的函数关系式并直接写出自变量x的取值范围每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?25(10分)二次函数y=ax2+bx+c(a,b,c为常数,且a1)中的x与y的部分对应值如表x1113y1353下列结论:ac1;当x1时,y的值随x值的增大而减小3是方程ax2+(b1)

11、x+c=1的一个根;当1x3时,ax2+(b1)x+c1其中正确的结论是 26(12分)先化简代数式,再从范围内选取一个合适的整数作为的值代入求值。27(12分)如图,直线yx+2与反比例函数 (k0)的图象交于A(a,3),B(3,b)两点,过点A作ACx轴于点C,过点B作BDx轴于点D求a,b的值及反比例函数的解析式;若点P在直线yx+2上,且SACPSBDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的

12、)1、B【解析】试题分析:B=60,将ABC沿射线BC的方向平移,得到ABC,再将ABC绕点A逆时针旋转一定角度后,点B恰好与点C重合,ABC=60,AB=AB=AC=4,ABC是等边三角形,BC=4,BAC=60,BB=64=2,平移的距离和旋转角的度数分别为:2,60故选B考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定2、D【解析】根据幂的乘方:底数不变,指数相乘合并同类项即可解答.【详解】解:A、B两项不是同类项,所以不能合并,故A、B错误,C、D考查幂的乘方运算,底数不变,指数相乘 ,故D正确;【点睛】本题考查幂的乘方和合并同类项,熟练掌握运算法则是解题的关键.3、B【解析

13、】根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.【详解】解:连接,为的直径,故选:B【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.4、D【解析】A. 原平均数是:(1+2+3+3+4+1) 6=3;添加一个数据3后的平均数是:(1+2+3+3+4+1+3) 7=3;平均数不发生变化.B. 原众数是:3;添加一个数据3后的众数是:3;众数不发生变化;C. 原中位数是:3;添加一个数据3后的中位数是:3;中位数不发生变化;D. 原方差是:;添加一个数据3后的方差是:;方差发生了变化.故选D.点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握

14、相关概念和公式是解题的关键5、D【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1x20x1,判断出三点所在的象限,再根据函数的增减性即可得出结论【详解】反比例函数y=中,k=10,此函数图象的两个分支在一、三象限,x1x20x1,A、B在第三象限,点C在第一象限,y10,y20,y10,在第三象限y随x的增大而减小,y1y2,y2y1y1故选D【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键6、C【解析】设的两根为x1,x2,由二次函数的图象可知,;设方程的两根为m,n,再根据根与系数的关系即可得出结论【详

15、解】解:设的两根为x1,x2,由二次函数的图象可知, 设方程的两根为m,n,则 .故选C【点睛】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键7、C【解析】利用正方体及其表面展开图的特点依次判断解题【详解】由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C【点睛】本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键8、C【解析】根据三角形的面积公式以及切线长定理即可求出答案【详解】连接PE、PF、PG,AP,由题意可知:PECPFAPGA90,SPBCBCP

16、E424,由切线长定理可知:SPFC+SPBGSPBC4,S四边形AFPGSABC+SPFC+SPBG+SPBC5+4+413,由切线长定理可知:SAPGS四边形AFPG,AGPG,AG,由切线长定理可知:CECF,BEBG,ABC的周长为AC+AB+CE+BEAC+AB+CF+BGAF+AG2AG13,故选C【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型9、A【解析】一元二次方程mx22x1=0有两个不相等的实数根,m0,且224m(1)0,解得:m1且m0.故选A.【点睛】本题考查一元二次方程ax2+bx+c=0(a0)根的判别式:(1)当=b24

17、ac0时,方程有两个不相等的实数根;(2)当=b24ac=0时,方程有有两个相等的实数根;(3)当=b24ac0时,方程没有实数根.10、D【解析】根据合并同类项、单项式的乘法、积的乘方和单项式的乘法逐项计算,结合排除法即可得出答案.【详解】A. 3a+a=2a,故不正确; B. 3x22x=6x3,故不正确;C. 4a25a2=-a2 ,故不正确; D. (2x3)22x2=4x62x2=2x4,故正确;故选D.【点睛】本题考查了合并同类项、单项式的乘法、积的乘方和单项式的乘法,熟练掌握它们的运算法则是解答本题的关键.11、A【解析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个

18、函数交点坐标就是二元一次方程组的解可直接得到答案【详解】解:直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),二元一次方程组的解为故选A.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式函数图象交点坐标为两函数解析式组成的方程组的解12、C【解析】试题解析:、由监测点监测时,函数值随的增大先减少再增大故选项错误;、由监测点监测时,函数值随的增大而增大,故选项错误;、由监测点监测时,函数值随的增大先减小再增大,然后再减小,选项正确;、由监测点监测时,函数值随的增大而减小,选项错误故选二、填空题:(本大题共6个小

19、题,每小题4分,共24分)13、四丈五尺【解析】根据同一时刻物高与影长成正比可得出结论【详解】解:设竹竿的长度为x尺,竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,解得x=45(尺)故答案为:四丈五尺【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键14、【解析】试题分析:根据有理数的加法,可得图中表示(+2)+(5)=1,故答案为1考点:正数和负数15、4ab【解析】根据单项式与单项式的乘法解答即可【详解】2a(2b)=4ab故答案为4ab【点睛】本题考查了单项式的乘法,关键是根据单项式的乘法法则解答16、0.532, 在用频率

20、估计概率时,试验次数越多越接近,所以取18组的频率值. 【解析】根据用频率估计概率解答即可.【详解】在用频率估计概率时,试验次数越多越接近,所以取18组的频率值,这一型号的瓶盖盖面朝上的概率为0.532,故答案为:0.532,在用频率估计概率时,试验次数越多越接近,所以取18组的频率值.【点睛】本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.17、【解析】首先根据题意列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案注意此题属于放回实验【详解】列表得:第一次 第二次黑白白黑黑,黑白,黑白,黑白黑

21、,白白,白白,白白黑,白白,白白,白共有9种等可能的结果,两次都摸到黑球的只有1种情况,两次都摸到黑球的概率是.故答案为:.【点睛】考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.18、2ab【解析】直接利用数轴上a,b的位置进而得出ba0,a0,再化简得出答案【详解】解:由数轴可得:ba0,a0,则|ba|+=ab+a=2ab故答案为2ab【点睛】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)刘徽奖的人数为人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数

22、是90分,众数是90分;(3)(点在第二象限)【解析】(1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;(2)根据中位数和众数的定义求解可得;(3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得【详解】(1)获奖的学生人数为2010%=200人,赵爽奖的人数为20024%=48人,杨辉奖的人数为20046%=92人,则刘徽奖的人数为200(20+48+92)=40,补全统计图如下:故答案为40;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分故答案为90、

23、90;(3)列表法:第二象限的点有(2,2)和(1,2),P(点在第二象限)【点睛】本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率20、(1)1m(1)1.5 m【解析】(1)由题意知ED=1.6m,BD=1m,利用勾股定理得出DF=求出即可;(1) 分别做DMAB,ENAB,DHEN,垂足分别为点M、N、H,利用sinDBM=及cosDEH=,可求出EH,HN即可得出答案.【详解】解:(1)在RtDEF中,由题意知ED=1.6 m,BD=1 m,

24、DF=1答:DF长为1m(1)分别做DMAB,ENAB,DHEN,垂足分别为点M、N、H,在RtDBM中,sinDBM=,DM=1sin351.2EDC=CNB,DCE=NCB,EDC=CBN=35,在RtDEH中,cosDEH=,EH=1.6cos351.3EN=EH+HN=1.3+1.2=1.451.5m答:E点离墙面AB的最远距离为1.5 m【点睛】本题主要考查三角函数的知识,牢记公式并灵活运用是解题的关键。21、(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元【解析】(1)设甲种品牌空

25、调的进货价为x元/台,则乙种品牌空调的进货价为1.2x元/台,根据数量=总价单价可得出关于x的分式方程,解之并检验后即可得出结论;(2)设购进甲种品牌空调a台,所获得的利润为y元,则购进乙种品牌空调(10-a)台,根据总价=单价数量结合总价不超过16000 元,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由总利润=单台利润购进数量即可得出y关于a的函数关系式,利用一次函数的性质即可解决最值问题【详解】(1)由(1)设甲种品牌的进价为x元,则乙种品牌空调的进价为(1+20%)x元,由题意,得 ,解得x=1500,经检验,x=1500是原分式方程的解,乙种品牌空调的进价为(1+20

26、%)1500=1800(元).答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)设购进甲种品牌空调a台,则购进乙种品牌空调(10-a)台,由题意,得1500a+1800(10-a)16000,解得 a,设利润为w,则w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,因为-7000,则w随a的增大而减少,当a=7时,w最大,最大为12100元.答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.【点睛】本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价单价

27、列出关于x的分式方程;(2)根据总利润=单台利润购进数量找出y关于a的函数关系式22、(1)一台A型无人机售价800元,一台B型无人机的售价1000元;(2)y200x+50000;购进A型、B型无人机各16台、34台时,才能使总费用最少【解析】(1)根据3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元,可以列出相应的方程组,从而可以解答本题;(2)根据题意可以得到y与x的函数关系式;根据中的函数关系式和B型无人机的数量不少于A型无人机的数量的2倍,可以求得购进A型、B型无人机各多少台,才能使总费用最少【详解】解:(1)设一台型无人机售价元,一台型无人

28、机的售价元, ,解得,答:一台型无人机售价元,一台型无人机的售价元;(2)由题意可得,即y与x的函数关系式为;B型无人机的数量不少于A型无人机的数量的2倍,解得,当时,y取得最小值,此时,答:购进型、型无人机各台、台时,才能使总费用最少【点睛】本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答23、-1【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案【详解】解:原式1【点睛】此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键24、(1)y10x2+130x+2300

29、,0x10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【解析】(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润月销售量即可求出函数关系式(2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可(3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0x10且x为正整数,分别计算出当x=6和x=7时y的值即可【详解】(1)根据题意得:y(30+x20)

30、(23010x)10x2+130x+2300,自变量x的取值范围是:0x10且x为正整数;(2)当y2520时,得10x2+130x+23002520,解得x12,x211(不合题意,舍去) 当x2时,30+x32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元(3)根据题意得:y10x2+130x+230010(x6.5)2+2722.5,a100,当x6.5时,y有最大值为2722.5,0x10且x为正整数,当x6时,30+x36,y2720(元),当x7时,30+x37,y2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元

31、【点睛】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程25、【解析】试题分析:x=1时y=1,x=1时,y=3,x=1时,y=5,解得,y=x2+3x+3,ac=13=31,故正确;对称轴为直线,所以,当x时,y的值随x值的增大而减小,故错误;方程为x2+2x+3=1,整理得,x22x3=1,解得x1=1,x2=3,所以,3是方程ax2+(b1)x+c=1的一个根,正确,故正确;1x3时,ax2+(b1)x+c1正确,故正确;综上所述,结论正确的是故答案为【考点】二次函数的性质26、-2【解析】先根据分式的

32、混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得【详解】原式= = ,x1且x0,在-1x2中符合条件的x的值为x=2,则原式=- =-2.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.27、(1)y;(2)P(0,2)或(3,5);(3)M(,0)或(,0)【解析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出SACP3|n1|,SBDP1|3n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2(m1)29,MB2(m3)21,AB232,再

33、三种情况建立方程求解即可得出结论【详解】(1)直线yx2与反比例函数y(k0)的图象交于A(a,3),B(3,b)两点,a23,32b,a1,b1,A(1,3),B(3,1),点A(1,3)在反比例函数y上,k133,反比例函数解析式为y; (2)设点P(n,n2),A(1,3),C(1,0),B(3,1),D(3,0),SACPAC|xPxA|3|n1|,SBDPBD|xBxP|1|3n|,SACPSBDP,3|n1|1|3n|,n0或n3,P(0,2)或(3,5);(3)设M(m,0)(m0),A(1,3),B(3,1),MA2(m1)29,MB2(m3)21,AB2(31)2(13)232,MAB是等腰三角形,当MAMB时,(m1)29(m3)21,m0,(舍)当MAAB时,(m1)2932,m1或m1(舍),M(1,0)当MBAB时,(m3)2132,m3或m3(舍),M(3,0)即:满足条件的M(1,0)或(3,0)【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁