《福建省福州市金山中学2022-2023学年中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《福建省福州市金山中学2022-2023学年中考数学五模试卷含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1一个多边形内角和是外角和的2倍,它是( )A五边形B六边形C七边形D八边形2关于反比例函数,下列说法正确的是( )A函数图像经过点(2,2);B函数图像位于第一、三象限;C当时,函数值随着的增大而增大;D当时,3化简的结果为( )A1
2、B1CD4在实数,0,4中,最大的是()AB0CD45已知关于x的方程x2+3x+a=0有一个根为2,则另一个根为()A5B1C2D56如图,矩形ABCD中,AB=8,BC=1点E在边AB上,点F在边CD上,点G、H在对角线AC上若四边形EGFH是菱形,则AE的长是( )A2B3C5D67(1)0+|1|=()A2 B1 C0 D18如图,O的半径OD弦AB于点C,连结AO并延长交O于点E,连结EC若AB=8,CD=2,则EC的长为()AB8CD9如图,A、B、C是O上的三点,BAC30,则BOC的大小是()A30B60C90D4510下列四个几何体中,主视图与左视图相同的几何体有()A1个B
3、2个C3个D4个二、填空题(共7小题,每小题3分,满分21分)11如图,已知点E是菱形ABCD的AD边上的一点,连接BE、CE,M、N分别是BE、CE的中点,连接MN,若A=60,AB=4,则四边形BCNM的面积为_12已知(x+y)225,(xy)29,则x2+y2_13如图,在等腰直角三角形ABC中,C=90,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AB=4,则图中阴影部分的面积为_(结果保留)14有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_.有个边长均
4、为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则的最大值为_15方程的两个根为、,则的值等于_16如果抛物线y=(m1)x2的开口向上,那么m的取值范围是_17如图为两正方形ABCD、CEFG和矩形DFHI的位置图,其中D,A两点分别在CG、BI上,若AB=3,CE=5,则矩形DFHI的面积是_三、解答题(共7小题,满分69分)18(10分)二次函数y=ax2+bx+c(a,b,c为常数,且a1)中的x与y的部分对应值如表x1113y1353下列结论:ac1;当x1时,y的值随x值的增大而减小3是方程ax2+(b1)x+c=1的一个根;当1x3时,ax
5、2+(b1)x+c1其中正确的结论是 19(5分)如图,在ABC中,ABC=90,BDAC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F(1)当AE平分BAC时,求证:BEF=BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长20(8分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p= t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?
6、(3)该养殖户有多少天日销售利润不低于2400元?21(10分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?22(10分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20
7、名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30608150401101301469010060811201407081102010081整理数据:课外阅读平均时间x(min)0x4040x8080x120120x160等级DCBA人数3a8b分析数据:平均数中位数众数80mn请根据以上提供的信息,解答下列问题:(1)填空:a,b;m,n;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多
8、少本课外书?23(12分)有四张正面分别标有数字1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀随机抽取一张卡片,求抽到数字“1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率24(14分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】多边形的外角和是310,则内角和是2310720设
9、这个多边形是n边形,内角和是(n2)180,这样就得到一个关于n的方程,从而求出边数n的值【详解】设这个多边形是n边形,根据题意得:(n2)1802310解得:n1故选B【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决2、C【解析】直接利用反比例函数的性质分别分析得出答案【详解】A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-,当x0时,函数值y随着x的增大而增大,故此选项正确;D、
10、关于反比例函数y=-,当x1时,y-4,故此选项错误;故选C【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键3、B【解析】先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案【详解】解:故选B4、C【解析】根据实数的大小比较即可得到答案.【详解】解:161725,45,04,故最大的是,故答案选C.【点睛】本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.5、B【解析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得
11、以解决【详解】关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,-2+m=,解得,m=-1,故选B6、C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EFAC;利用”AAS或ASA”易证FMCEMA,根据全等三角形的性质可得AM=MC;在RtABC中,由勾股定理求得AC=,且tanBAC=;在RtAME中,AM=AC=,tanBAC=可得EM=;在RtAME中,由勾股定理求得AE=2故答案选C考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数7、A【解析】根据绝对值和数的0次幂的概念作答即可.【详解】原式=1+1=2故答案为:A.【点睛】本题考查的
12、知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.8、D【解析】O的半径OD弦AB于点C,AB=8,AC=AB=1设O的半径为r,则OC=r2,在RtAOC中,AC=1,OC=r2,OA2=AC2+OC2,即r2=12+(r2)2,解得r=2AE=2r=3连接BE,AE是O的直径,ABE=90在RtABE中,AE=3,AB=8,在RtBCE中,BE=6,BC=1,故选D9、B【解析】【分析】欲求BOC,又已知一圆周角BAC,可利用圆周角与圆心角的关系求解【详解】BAC=30,BOC=2BAC =60(同弧所对的圆周角是圆心角的一半),故选B【点睛】本题考查了圆周角定理:在同圆或等圆中,
13、同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半10、D【解析】解:正方体的主视图与左视图都是正方形;球的主视图与左视图都是圆;圆锥主视图与左视图都是三角形;圆柱的主视图和左视图都是长方形;故选D二、填空题(共7小题,每小题3分,满分21分)11、3【解析】如图,连接BD首先证明BCD是等边三角形,推出SEBC=SDBC=42=4,再证明EMNEBC,可得=()2=,推出SEMN=,由此即可解决问题.【详解】解:如图,连接BD四边形ABCD是菱形,AB=BC=CD=AD=4,A=BCD=60,ADBC,BCD是等边三角形,SEBC=SDBC=42=4,EM=MB,EN=NC,MNBC
14、,MN=BC,EMNEBC,=()2=,SEMN=,S阴=4-=3,故答案为3【点睛】本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型12、17【解析】先利用完全平方公式展开,然后再求和.【详解】根据(x+y)2=25,x2+y2+2xy=25;(xy)2=9, x2+y2-2xy=9,所以x2+y2=17.【点睛】(1)完全平方公式:.(2)平方差公式:(a+b)(a-b)=.(3)常用等价变形:,.13、4【解析】由在等腰直角三角形ABC中,C=90,AB=4,可求得直角边AC与BC的长,继而求得ABC的面积,又由
15、扇形的面积公式求得扇形EAD和扇形FBD的面积,继而求得答案【详解】解:在等腰直角三角形ABC中,C=90,AB=4,AC=BC=ABsin45=AB=2,SABC=ACBC=4,点D为AB的中点,AD=BD=AB=2,S扇形EAD=S扇形FBD=22=,S阴影=SABCS扇形EADS扇形FBD=4故答案为:4【点睛】此题考查了等腰直角三角形的性质以及扇形的面积注意S阴影=SABCS扇形EADS扇形FBD14、18 1 【解析】有四个边长均为1的正六边形,采用方式1拼接,利用4n+2的规律计算;把六个正六边形围着一个正六边按照方式2进行拼接可使周长为8,六边形的个数最多【详解】解:有四个边长均
16、为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为44+2=18;按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n的最大值为1故答案为:18;1【点睛】本题考查了正多边形和圆,以及图形的变化类规律总结问题,根据题意,得出规律是解决此题的关键15、1【解析】根据一元二次方程根与系数的关系求解即可.【详解】解:根据题意得,所以=1故答案为1【点睛】本题考查了根与系数的关系:若、是一元二次方程(a0)的两根时,16、m2【解析】试题分析:根据二次函数的性质可知,当抛物线开口向上时,二次项系数m22解:因为抛物线y=(m2)x2的开口向上,所以m22,即m2,故m的取值范围是m
17、2考点:二次函数的性质17、 【解析】由题意先求出DG和FG的长,再根据勾股定理可求得DF的长,然后再证明DGFDAI,依据相似三角形的性质可得到DI的长,最后依据矩形的面积公式求解即可【详解】四边形ABCD、CEFG均为正方形,CD=AD=3,CG=CE=5,DG=2,在RtDGF中, DF=,FDG+GDI=90,GDI+IDA=90,FDG=IDA又DAI=DGF,DGFDAI,即,解得:DI=,矩形DFHI的面积是=DFDI=,故答案为:【点睛】本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键三、解答题(共7小题,满分
18、69分)18、【解析】试题分析:x=1时y=1,x=1时,y=3,x=1时,y=5,解得,y=x2+3x+3,ac=13=31,故正确;对称轴为直线,所以,当x时,y的值随x值的增大而减小,故错误;方程为x2+2x+3=1,整理得,x22x3=1,解得x1=1,x2=3,所以,3是方程ax2+(b1)x+c=1的一个根,正确,故正确;1x3时,ax2+(b1)x+c1正确,故正确;综上所述,结论正确的是故答案为【考点】二次函数的性质19、(1)证明见解析;(1)2【解析】分析:(1)根据角平分线的定义可得1=1,再根据等角的余角相等求出BEF=AFD,然后根据对顶角相等可得BFE=AFD,等量
19、代换即可得解; (1)根据中点定义求出BC,利用勾股定理列式求出AB即可详解:(1)如图,AE平分BAC,1=1 BDAC,ABC=90,1+BEF=1+AFD=90,BEF=AFD BFE=AFD(对顶角相等),BEF=BFE; (1)BE=1,BC=4,由勾股定理得:AB=2 点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键20、 (1)y=2t+200(1t80,t为整数); (2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件【解析】(1)根据函数图象,设解析式为y=kt+b,将(1,198)、(80,4
20、0)代入,利用待定系数法求解可得;(2)设日销售利润为w,根据“总利润=每千克利润销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;(3)求出w=2400时t的值,结合函数图象即可得出答案;【详解】(1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得: ,解得:,y=2t+200(1t80,t为整数); (2)设日销售利润为w,则w=(p6)y,当1t80时,w=(t+166)(2t+200)=(t30)2+2450, 当t=30时,w最大=2450;第30天的日销售利润最大,最大利润为2450元 (3)由(2)得:当1t80时,w=(t30)2+2450,令w=
21、2400,即 (t30)2+2450=2400,解得:t1=20、t2=40,t的取值范围是20t40,共有21天符合条件【点睛】本题考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象解不等式及二次函数的图象与性质是解题关键21、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励【解析】(1)设年平均增长率为x,根据“2015年投入资金(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和500万”列不等式求解即可【
22、详解】(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=2.25(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:10008400+(a1000)54005000000,解得:a1900,答:今年该地至少有1900户享受到优先搬迁租房奖励考点:一元二次方程的应用;一元一次不等式的应用.22、(1)a5,b4;m81,n81;(2)300人;(3)16本【解析】(1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n
23、;(2)达标的学生人数总人数达标率,依此即可求解;(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果【详解】解:(1)由统计表收集数据可知a5,b4,m81,n81;(2)(人)答:估计达标的学生有300人;(3)805226016(本)答:估计该校学生每人一年(按52周计算)平均阅读16本课外书【点睛】本题主要考查统计表以及中位数,众数,估计达标人数等,能够从统计表中获取有效信息是解题的关键.23、(1);(2)【解析】试题分析:(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解解:(1)随机抽取一张卡片有4种等可能结果,其中抽到数字“1”的只有1种,抽到数字“1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,第一次抽到数字“2”且第二次抽到数字“0”的概率为24、.【解析】试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.试题解析:解:画树状图如答图:共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,P(A,C两个区域所涂颜色不相同)=.考点:1画树状图或列表法;2概率