重庆市实验外国语校2023年中考联考数学试题含解析.doc

上传人:茅**** 文档编号:88311006 上传时间:2023-04-25 格式:DOC 页数:21 大小:804KB
返回 下载 相关 举报
重庆市实验外国语校2023年中考联考数学试题含解析.doc_第1页
第1页 / 共21页
重庆市实验外国语校2023年中考联考数学试题含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《重庆市实验外国语校2023年中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《重庆市实验外国语校2023年中考联考数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1在代数式 中,m的取值范围是()Am3Bm0Cm3Dm3且m02如图,函数y=2x+2的图象分别与x轴,y轴交于A,B两

2、点,点C在第一象限,ACAB,且AC=AB,则点C的坐标为()A(2,1)B(1,2)C(1,3)D(3,1)3如图,在矩形ABCD中,AB5,AD3,动点P满足SPABS矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()ABC5D4下列条件中不能判定三角形全等的是( )A两角和其中一角的对边对应相等B三条边对应相等C两边和它们的夹角对应相等D三个角对应相等52016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为( )A0.334 B C D6若A(4,y1),B(3,y2),C(1,y3)为二次函

3、数yx24x+m的图象上的三点,则y1,y2,y3的大小关系是( )Ay1y2y3 By3y2y1 Cy3y1y2 Dy1y3y27如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是( )A线段EF的长逐渐增长B线段EF的长逐渐减小C线段EF的长始终不变D线段EF的长与点P的位置有关8(3分)学校要组织足球比赛赛制为单循环形式(每两队之间赛一场)计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛根据题意,下面所列方程正确的是( )A B C D9二次函数yax2bxc(a0)的图象如图,下

4、列结论正确的是() Aa0Bb24ac0C当1x0D=110下列调查中,最适合采用全面调查(普查)的是()A对我市中学生每周课外阅读时间情况的调查B对我市市民知晓“礼让行人”交通新规情况的调查C对我市中学生观看电影厉害了,我的国情况的调查D对我国首艘国产航母002型各零部件质量情况的调查11在下列四个标志中,既是中心对称又是轴对称图形的是()ABCD12二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,DACE于点A,CDAB,1=30,则D=_14已知:a(a+2)=1,则a2+ =_15抛物

5、线y=2x2+4x2的顶点坐标是_16在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径OA弧AB弧BC半径CD半径DE”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是_,的坐标是_17对于一切不小于2的自然数n,关于x的一元二次方程x2(n+2)x2n2=0的两个根记作an,bn(n2),则_18有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是 三、解答题:(本大题共9个小题,共78分

6、,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接DE,AC(1)求证:四边形ACDE为平行四边形;(2)连接CE交AD于点O,若AC=AB=3,cosB=,求线段CE的长20(6分)如图,在ABC中,AB=AC,ABC=72(1)用直尺和圆规作ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出ABC的平分线BD后,求BDC的度数21(6分)解不等式组22(8分)列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏现有甲、乙两个广告公司都具备制作能力,居

7、委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?23(8分)一艘观光游船从港口A以北偏东60的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间(温馨提示:sin530.8,cos530.6)24(10分)如图,AB是O的

8、直径, O过BC的中点D,DEAC求证: BDACED25(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180,得到新的抛物线C(1)求抛物线C的函数表达式;(2)若抛物线C与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C上的对应点P,设M是C上的动点,N是C上的动点,试探究四边形PMPN能否成为正方形?若能,求出m的值;若不能,请说明理由26(12分)定义:在三角形

9、中,把一边的中点到这条边的高线的距离叫做这条边的中垂距例:如图,在ABC中,D为边BC的中点,AEBC于E,则线段DE的长叫做边BC的中垂距(1)设三角形一边的中垂距为d(d0)若d=0,则这样的三角形一定是 ,推断的数学依据是 .(2)如图,在ABC中,B=15,AB=3,BC=8,AD为边BC的中线,求边BC的中垂距(3)如图,在矩形ABCD中,AB=6,AD=1点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC求ACF中边AF的中垂距27(12分)如图,在平面直角坐标系中,直线y=kx+3与轴、轴分别相交于点A、B,并与抛物线的对称轴交于点,抛物线的顶点是点(1)求k和b的

10、值;(2)点G是轴上一点,且以点、C、为顶点的三角形与相似,求点G的坐标;(3)在抛物线上是否存在点E:它关于直线AB的对称点F恰好在y轴上如果存在,直接写出点E的坐标,如果不存在,试说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据二次根式有意义的条件即可求出答案【详解】由题意可知:解得:m3且m0故选D【点睛】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型2、D【解析】过点C作CDx轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再

11、证明ABOCAD,得到ADOB2,CDAO1,则C点坐标可求.【详解】如图,过点C作CDx轴与D.函数y=2x+2的图象分别与x轴,y轴交于A,B两点,当x0时,y2,则B(0,2);当y0时,x1,则A(1,0).ACAB,ACAB,BAOCAD90,ABOCAD.在ABO和CAD中,ABOCAD,ADOB2,CDOA1,ODOAAD123,C点坐标为(3,1).故选D.【点睛】本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相关知识点是解答的关键.3、D【解析】解:设ABP中AB边上的高是hSPAB=S矩形ABCD, ABh=ABAD,h=AD=2,

12、动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE就是所求的最短距离在RtABE中,AB=5,AE=2+2=4,BE= =,即PA+PB的最小值为故选D4、D【解析】解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;C、符合SAS,能判定三角形全等;D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;故选D5、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对

13、值1时,n是负数解:334亿=3.341010“点睛”此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值6、B【解析】根据函数解析式的特点,其对称轴为x=2,A(4,y1),B(3,y2),C(1,y3)在对称轴左侧,图象开口向上,利用y随x的增大而减小,可判断y3y2y1.【详解】抛物线y=x24x+m的对称轴为x=2,当x2时,y随着x的增大而减小,因为-4-312,所以y3y2y1,故选B.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的增减性是解题的关键.7、C【解析】试题

14、分析:连接AR,根据勾股定理得出AR=的长不变,根据三角形的中位线定理得出EF=AR,即可得出线段EF的长始终不变,故选C考点:1、矩形性质,2、勾股定理,3、三角形的中位线8、B【解析】试题分析:设有x个队,每个队都要赛(x1)场,但两队之间只有一场比赛,由题意得:,故选B考点:由实际问题抽象出一元二次方程9、D【解析】试题分析:根据二次函数的图象和性质进行判断即可.解:抛物线开口向上,A选项错误,抛物线与x轴有两个交点, B选项错误,由图象可知,当1x3时,y0C选项错误,由抛物线的轴对称性及与x轴的两个交点分别为(1,0)和(3,0)可知对称轴为 即1,D选项正确,故选D.10、D【解析

15、】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似由此,对各选项进行辨析即可.【详解】A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;C、对我市中学生观看电影厉害了,我的国情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;故选D【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对

16、象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查11、C【解析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解【详解】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误故选C【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后

17、两部分重合12、D【解析】根据抛物线和直线的关系分析.【详解】由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.故选D【点睛】考核知识点:反比例函数图象.二、填空题:(本大题共6个小题,每小题4分,共24分)13、60【解析】先根据垂直的定义,得出BAD=60,再根据平行线的性质,即可得出D的度数【详解】DACE,DAE=90,1=30,BAD=60,又ABCD,D=BAD=60,故答案为60【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等14、3【解析】先根据a(a+2)=1得出a2=1-2a,再把a2=1-2a代入a2+进行

18、计算.【详解】a(a+2)=1得出a2=1-2a,a2+1-2a+= =3.【点睛】本题考查的是代数式求解,熟练掌握代入法是解题的关键.15、(1,1)【解析】利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标【详解】x=-=-1,把x=-1代入得:y=2-1-2=-1则顶点的坐标是(-1,-1)故答案是:(-1,-1)【点睛】本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解16、 【解析】设第n秒运动到Kn(n为自然数)点,根据点K的运动规律找出部分Kn点的坐标,根据坐标的变化找出变化规律“K4n+1(),K4n+2(2n+1,0),K4n

19、+3(),K4n+4(2n+2,0)”,依此规律即可得出结论【详解】设第n秒运动到Kn(n为自然数)点,观察,发现规律:K1(),K2(1,0),K3(),K4(2,0),K5(),K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)2018=4504+2,K2018为(1009,0)故答案为:(),(1009,0)【点睛】本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键17、【解析】试题分析:由根与系数的关系得:,则, 则,原式=点睛:本题主要考查的就

20、是一元二次方程的韦达定理以及规律的整理,属于中等题型解决这个问题的关键就是要想到使用韦达定理,然后根据计算的法则得出规律,从而达到简便计算的目的18、【解析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可【详解】有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是故答案为【点睛】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析

21、;(2)4【解析】(1)已知四边形 ABCD 是平行四边形,根据平行四边形的性质可得ABCD,AB=CD,又因AE=AB,可得AE=CD,根据一组对边平行且相等的四边形是平行四边形即可判定四边形 ACDE 是平行四边形;(2)连接 EC,易证BEC 是直角三角形,解直角三角形即可解决问题.【详解】(1)证明:四边形 ABCD 是平行四边形,ABCD,AB=CD,AE=AB,AE=CD,AECD,四边形 ACDE 是平行四边形(2)如图,连接 ECAC=AB=AE,EBC 是直角三角形,cosB=,BE=6,BC=2,EC=4【点睛】本题考查平行四边形的性质和判定、直角三角形的判定、勾股定理、锐

22、角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型20、(1)作图见解析(2)BDC=72【解析】解:(1)作图如下:(2)在ABC中,AB=AC,ABC=72,A=1802ABC=180144=36AD是ABC的平分线,ABD=ABC=72=36BDC是ABD的外角,BDC=A+ABD=36+36=72(1)根据角平分线的作法利用直尺和圆规作出ABC的平分线:以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;分别以点E、F为圆心,大于EF为半径画圆,两圆相较于点G,连接BG交AC于点D(2)先根据等腰三角形的性质及三角形内角和定理求出A的度数,再由角平分线的性

23、质得出ABD的度数,再根据三角形外角的性质得出BDC的度数即可21、1x1【解析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可【详解】解不等式2x+11,得:x1,解不等式x+14(x2),得:x1,则不等式组的解集为1x1【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键22、甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏【解析】设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可【详解】解:设甲广告公司每天能制作x个宣传栏,则

24、乙广告公司每天能制作1.2x个宣传栏根据题意得: 解得:x=1经检验:x=1是原方程的解且符合实际问题的意义1.2x=1.21=2答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏【点睛】此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键23、小时【解析】过点C作CDAB交AB延长线于D先解RtACD得出CD=AC=40海里,再解RtCBD中,得出BC=50,然后根据时间=路程速度即可求出海警船到大事故船C处所需的时间【详解】解:如图,过点C作CDAB交AB延长线于D在RtACD中,ADC=90,CAD=30,AC=80海里,CD=AC=40海

25、里在RtCBD中,CDB=90,CBD=9037=53,BC=50(海里),海警船到大事故船C处所需的时间大约为:5040=(小时)考点:解直角三角形的应用-方向角问题24、证明见解析.【解析】不难看出BDA和CED都是直角三角形,证明BDACED,只需要另外找一对角相等即可,由于AD是ABC的中线,又可证ADBC,即AD为BC边的中垂线,从而得到B=C,即可证相似【详解】AB是O直径,ADBC,又BD=CD,AB=AC,B=C,又ADB=DEC=90,BDACED.【点睛】本题重点考查了圆周角定理、直径所对的圆周角为直角及相似三角形判定等知识的综合运用25、(1);(2)2m;(1)m=6或

26、m=1【解析】(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,由此即可解决问题;(2)由题意抛物线C的顶点坐标为(2m,4),设抛物线C的解析式为,由,消去y得到,由题意,抛物线C与抛物线C在y轴的右侧有两个不同的公共点,则有,解不等式组即可解决问题;(1)情形1,四边形PMPN能成为正方形作PEx轴于E,MHx轴于H由题意易知P(2,2),当PFM是等腰直角三角形时,四边形PMPN是正方形,推出PF=FM,PFM=90,易证PFEFMH,可得PE=FH=2,EF=HM=2m,可得M(m+2,m2),理由待定系数法即可解决问题;情形2,如图,四边

27、形PMPN是正方形,同法可得M(m2,2m),利用待定系数法即可解决问题【详解】(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,抛物线C的函数表达式为(2)由题意抛物线C的顶点坐标为(2m,4),设抛物线C的解析式为,由,消去y得到 ,由题意,抛物线C与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2m,满足条件的m的取值范围为2m(1)结论:四边形PMPN能成为正方形理由:1情形1,如图,作PEx轴于E,MHx轴于H由题意易知P(2,2),当PFM是等腰直角三角形时,四边形PMPN是正方形,PF=FM,PFM=90,易证PFEFMH,可得P

28、E=FH=2,EF=HM=2m,M(m+2,m2),点M在上,解得m=1或1(舍弃),m=1时,四边形PMPN是正方形情形2,如图,四边形PMPN是正方形,同法可得M(m2,2m),把M(m2,2m)代入中,解得m=6或0(舍弃),m=6时,四边形PMPN是正方形综上所述:m=6或m=1时,四边形PMPN是正方形26、(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3). 【解析】试题分析:(1)根据线段的垂直平分线的性质即可判断(2)如图中,作AEBC于E根据已知得出AE=BE,再求出BD的长,即可求出DE的长(3)如图中,作CHAF于H,先证ADEFCE,得出AE=E

29、F,利用勾股定理求出AE的长,然后证明ADECHE,建立方程求出EH即可解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等(2)解:如图中,作AEBC于E在RtABE中,AEB=90,B=15,AB=3 ,AE=BE=3,AD为BC边中线,BC=8,BD=DC=1,DE=BDBE=13=1,边BC的中垂距为1(3)解:如图中,作CHAF于H四边形ABCD是矩形,D=EHC=ECF=90,ADBF,DE=EC,AED=CEF,ADEFCE,AE=EF,在RtADE中,AD=1,DE=3,AE= =5,D=EHC,AED=CEH,ADECHE, = , = ,EH= ,ACF中边AF的中

30、垂距为 27、 (1)k=-,b=1;(1) (0,1)和 【解析】分析:(1) 由直线经过点,可得由抛物线的对称轴是直线,可得,进而得到A、B、D的坐标,然后分两种情况讨论即可;(3)设E(a,),E关于直线AB的对称点E为(0,b),EE与AB的交点为P则EEAB,P为EE的中点,列方程组,求解即可得到a的值,进而得到答案详解:(1) 由直线经过点,可得由抛物线的对称轴是直线,可得 直线与x轴、y轴分别相交于点、,点的坐标是,点的坐标是抛物线的顶点是点,点的坐标是点是轴上一点,设点的坐标是BCG与BCD相似,又由题意知,BCG与相似有两种可能情况: 如果,那么,解得,点的坐标是如果,那么,解得,点的坐标是综上所述:符合要求的点有两个,其坐标分别是和 (3)设E(a,),E关于直线AB的对称点E为(0,b),EE与AB的交点为P,则EEAB,P为EE的中点, ,整理得:,(a-1)(a+1)=0,解得:a=1或a=1当a=1时,=;当a=1时,=;点的坐标是或点睛:本题是二次函数的综合题考查了二次函数的性质、解析式的求法以及相似三角形的性质解答(1)问的关键是要分类讨论,解答(3)的关键是利用两直线垂直则k的乘积为1和P是EE的中点

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁