重庆市云阳江口中学2022-2023学年高三下学期联合考试数学试题含解析.doc

上传人:茅**** 文档编号:88310815 上传时间:2023-04-25 格式:DOC 页数:19 大小:1.74MB
返回 下载 相关 举报
重庆市云阳江口中学2022-2023学年高三下学期联合考试数学试题含解析.doc_第1页
第1页 / 共19页
重庆市云阳江口中学2022-2023学年高三下学期联合考试数学试题含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《重庆市云阳江口中学2022-2023学年高三下学期联合考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《重庆市云阳江口中学2022-2023学年高三下学期联合考试数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

2、1若复数是纯虚数,则实数的值为( )A或BCD或2已知命题:R,;命题 :R,则下列命题中为真命题的是( )ABCD3如图所示,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是( )ABCD4如图是二次函数的部分图象,则函数的零点所在的区间是( )ABCD5在区间上随机取一个实数,使直线与圆相交的概率为( )ABCD6函数在上的图象大致为( )ABCD7某四棱锥的三视图如图所示,则该四棱锥的体积为( )ABCD8已知复数和复数,则为ABCD9已知集合,则( )ABCD10已知向量,则向量在向量上的投影是( )ABCD11天干地支,简称为干支,源自中国远古时代对天

3、象的观测.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”称为十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”称为十二地支.干支纪年法是天干和地支依次按固定的顺序相互配合组成,以此往复,60年为一个轮回.现从农历2000年至2019年共20个年份中任取2个年份,则这2个年份的天干或地支相同的概率为( )ABCD12过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13给出以下式子:tan25+tan35tan25tan35;2(sin35cos25+cos35cos65);其中,结果为的式子

4、的序号是_.14已知以x2y =0为渐近线的双曲线经过点,则该双曲线的标准方程为_.15我国古代名著张丘建算经中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭;令上方六尺:问亭方几何?”大致意思是:有一个四棱锥下底边长为二丈,高三丈;现从上面截取一段,使之成为正四棱台状方亭,且四棱台的上底边长为六尺,则该正四棱台的高为_尺,体积是_立方尺(注:1丈=10尺).16已知,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)眼保健操是一种眼睛的保健体操,主要是通过按摩眼部穴位,调整眼及头部的血液循环,调节肌肉,改善眼的疲劳,达到预防近视等眼部疾病的目的.某学校为了调查

5、推广眼保健操对改善学生视力的效果,在应届高三的全体800名学生中随机抽取了100名学生进行视力检查,并得到如图的频率分布直方图.(1)若直方图中后三组的频数成等差数列,试估计全年级视力在5.0以上的人数;(2)为了研究学生的视力与眼保健操是否有关系,对年级不做眼保健操和坚持做眼保健操的学生进行了调查,得到下表中数据,根据表中的数据,能否在犯错的概率不超过0.005的前提下认为视力与眼保健操有关系?(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取8人,进一步调查他们良好的护眼习惯,在这8人中任取2人,记坚持做眼保健操的学生人数为X,求X的分布列和数学期望.附:0.100.0

6、50.0250.0100.005k2.7063.8415.0246.6357.87918(12分)已知数列中,(实数为常数),是其前项和,且数列是等比数列,恰为与的等比中项(1)证明:数列是等差数列; (2)求数列的通项公式;(3)若,当时,的前项和为,求证:对任意,都有19(12分)为了响应国家号召,促进垃圾分类,某校组织了高三年级学生参与了“垃圾分类,从我做起”的知识问卷作答随机抽出男女各20名同学的问卷进行打分,作出如图所示的茎叶图,成绩大于70分的为“合格”.()由以上数据绘制成22联表,是否有95%以上的把握认为“性别”与“问卷结果”有关?男女总计合格不合格总计()从上述样本中,成绩

7、在60分以下(不含60分)的男女学生问卷中任意选2个,记来自男生的个数为,求的分布列及数学期望.附:0.1000.0500.0100.0012.7063.8416.63510.828 20(12分)在平面直角坐标系中,直线与抛物线:交于,两点,且当时,.(1)求的值;(2)设线段的中点为,抛物线在点处的切线与的准线交于点,证明:轴.21(12分)一张边长为的正方形薄铝板(图甲),点,分别在,上,且(单位:).现将该薄铝板沿裁开,再将沿折叠,沿折叠,使,重合,且重合于点,制作成一个无盖的三棱锥形容器(图乙),记该容器的容积为(单位:),(注:薄铝板的厚度忽略不计)(1)若裁开的三角形薄铝板恰好是

8、该容器的盖,求,的值;(2)试确定的值,使得无盖三棱锥容器的容积最大.22(10分)已知函数(1)求不等式的解集;(2)若函数的定义域为,求实数 的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:因为复数是纯虚数,所以且,因此注意不要忽视虚部不为零这一隐含条件.考点:纯虚数2、B【解析】根据,可知命题的真假,然后对取值,可得命题 的真假,最后根据真值表,可得结果.【详解】对命题:可知,所以R,故命题为假命题命题 :取,可知所以R,故命题为真命题所以为真命题故选:B【点睛】本题主要考查对命题真假的判断以

9、及真值表的应用,识记真值表,属基础题.3、A【解析】联立直线方程与椭圆方程,解得和的坐标,然后利用向量垂直的坐标表示可得,由离心率定义可得结果.【详解】由,得,所以,.由题意知,所以,.因为,所以,所以.所以,所以,故选:A.【点睛】本题考查了直线与椭圆的交点,考查了向量垂直的坐标表示,考查了椭圆的离心率公式,属于基础题.4、B【解析】根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【详解】,结合函数的图象可知,二次函数的对称轴为,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.【点睛】本题考查二次函数的图象及函数的零点,属于基础题

10、.5、D【解析】利用直线与圆相交求出实数的取值范围,然后利用几何概型的概率公式可求得所求事件的概率.【详解】由于直线与圆相交,则,解得.因此,所求概率为.故选:D.【点睛】本题考查几何概型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题.6、A【解析】首先判断函数的奇偶性,再根据特殊值即可利用排除法解得;【详解】解:依题意,故函数为偶函数,图象关于轴对称,排除C;而,排除B;,排除D.故选:.【点睛】本题考查函数图象的识别,函数的奇偶性的应用,属于基础题.7、B【解析】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积【详解】由三视图知该四棱锥是

11、底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为.故选:B.【点睛】本题考查了利用三视图求几何体体积的问题,是基础题8、C【解析】利用复数的三角形式的乘法运算法则即可得出【详解】z1z2(cos23+isin23)(cos37+isin37)cos60+isin60故答案为C【点睛】熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.9、B【解析】求出集合,利用集合的基本运算即可得到结论.【详解】由,得,则集合,所以,.故选:B.【点睛】本题主要

12、考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题.10、A【解析】先利用向量坐标运算求解,再利用向量在向量上的投影公式即得解【详解】由于向量,故向量在向量上的投影是.故选:A【点睛】本题考查了向量加法、减法的坐标运算和向量投影的概念,考查了学生概念理解,数学运算的能力,属于中档题.11、B【解析】利用古典概型概率计算方法分析出符合题意的基本事件个数,结合组合数的计算即可出求得概率.【详解】20个年份中天干相同的有10组(每组2个),地支相同的年份有8组(每组2个),从这20个年份中任取2个年份,则这2个年份的天干或地支相同的概率.故选:B.【点睛】本小题主要考查古典概型的

13、计算,考查组合数的计算,考查学生分析问题的能力,难度较易.12、D【解析】如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知分别结合和差角的正切及正弦余弦公式进行化简即

14、可求解.【详解】tan60tan(25+35),tan25+tan35tan25tan35;tan25tan35,2(sin35cos25+cos35cos65)2(sin35cos25+cos35sin25),2sin60;tan(45+15)tan60;故答案为:【点睛】本题主要考查了两角和与差的三角公式在三角化简求值中的应用,属于中档试题.14、【解析】设双曲线方程为,代入点,计算得到答案.【详解】双曲线渐近线为,则设双曲线方程为:,代入点,则.故双曲线方程为:.故答案为:.【点睛】本题考查了根据渐近线求双曲线,设双曲线方程为是解题的关键.15、21 3892 【解析】根据题意画出图形,

15、利用棱锥与棱台的结构特征求出正四棱台的高,再计算它的体积.【详解】如图所示:正四棱锥P-A BCD的下底边长为二丈,即AB=20尺,高三丈,即PO=30尺,截去一段后,得正四棱台ABCD-ABCD,且上底边长为AB=6尺,所以,解得,所以该正四棱台的体积是,故答案为:21;3892.【点睛】本题考查了棱锥与棱台的结构特征与应用问题,也考查了棱台的体积计算问题,属于中档题.16、【解析】由已知利用同角三角函数的基本关系式可求得,的值,由两角差的正弦公式即可计算得的值.【详解】,.故答案为:【点睛】本题主要考查了同角三角函数的基本关系、两角差的正弦公式,需熟记公式,属于基础题.三、解答题:共70分

16、。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)能在犯错误的概率不超过0.005的前提下认为视力与眼保健操有关系(3)详见解析【解析】(1)由题意可计算后三组的频数的总数,由其成等差数列可得后三组频数,可得视力在5.0以上的频率,可得全年级视力在5.0以上的的人数;(2)由题中数据计算的值,对照临界值表可得答案;(3)由题意可计算出这8人中不做眼保健操和坚持做眼保健操的分别有2人和6人,可得X可取0,1,2,分别计算出其概率,列出分布列,可得其数学期望.【详解】解:(1)由图可知,第一组有3人,第二组7人,第三组27人,因为后三组的频数成等差数列,共有(人)所以后三组频数依次为24

17、,21,18,所以视力在5.0以上的频率为0.18,故全年级视力在5.0以上的的人数约为人(2),因此能在犯错误的概率不超过0.005的前提下认为视力与眼保健操有关系.(3)调查的100名学生中不近视的共有24人,从中抽取8人,抽样比为,这8人中不做眼保健操和坚持做眼保健操的分别有2人和6人,X可取0,1,2,X的分布列X012PX的数学期望.【点睛】本题主要考查频率分布直方图,独立性检测及离散型随机变量的期望与方差等相关知识,考查学生分析数据与处理数据的能力,属于中档题.18、(1)见解析(2)(3)见解析【解析】(1)令可得,即得到,再利用通项公式和前n项和的关系求解, (2)由(1)知,

18、设等比数列的公比为,所以,再根据恰为与的等比中项求解,(3)由(2)得到时,求得,再代入证明。【详解】(1)解:令可得,即所以时,可得,当时,所以显然当时,满足上式所以,所以数列是等差数列, (2)由(1)知,设等比数列的公比为,所以,恰为与的等比中项,所以,解得,所以(3)时,而时,所以当时,.当时,对任意,都有,【点睛】本题主要考查数列的通项公式和前n项和的关系,等差数列,等比数列的定义和性质以及数列放缩的方法,还考查了转化化归的思想和运算求解的能力,属于难题,19、()填表见解析,有95%以上的把握认为“性别”与“问卷结果”有关; ()分布列见解析,【解析】()根据茎叶图填写列联表,计算

19、得到答案.(),计算,得到分布列,再计算数学期望得到答案.【详解】()根据茎叶图可得:男女总计合格101626不合格10414总计202040,故有95%以上的把握认为“性别”与“问卷结果”有关.()从茎叶图可知,成绩在60分以下(不含60分)的男女学生人数分别是4人和2人,从中任意选2人,基本事件总数为,012.【点睛】本题考查了独立性检验,分布列,数学期望,意在考查学生的综合应用能力.20、(1)1;(2)见解析【解析】(1)设,联立直线和抛物线方程,得,写出韦达定理,根据弦长公式,即可求出;(2)由,得,根据导数的几何意义,求出抛物线在点点处切线方程,进而求出,即可证出轴.【详解】解:(

20、1)设,将直线代入中整理得:,解得:.(2)同(1)假设,由,得,从而抛物线在点点处的切线方程为,即,令,得,由(1)知,从而,这表明轴.【点睛】本题考查直线与抛物线的位置关系,涉及联立方程组、韦达定理、弦长公式以及利用导数求切线方程,考查转化思想和计算能力.21、(1),;(2)当值为时,无盖三棱锥容器的容积最大.【解析】(1)由已知求得,求得三角形的面积,再由已知得到平面,代入三棱锥体积公式求的值;(2)由题意知,在等腰三角形中,则,写出三角形面积,求其平方导数的最值,则答案可求【详解】解:(1)由题意,为等腰直角三角形,又,恰好是该零件的盖,则,由图甲知,则在图乙中,又,平面,平面,;(

21、2)由题意知,在等腰三角形中,则,令,可得:当时,当,时,当时,有最大值由(1)知,平面,该三棱锥容积的最大值为,且当时,取得最大值,无盖三棱锥容器的容积最大答:当值为时,无盖三棱锥容器的容积最大【点睛】本题考查棱锥体积的求法,考查空间想象能力与思维能力,训练了利用导数求最值,属于中档题22、 (1) (2) 【解析】(1)分类讨论,去掉绝对值,化为与之等价的三个不等式组,求得每个不等式组的解集,再取并集即可(2)要使函数的定义域为R,只要的最小值大于0即可,根据绝对值不等式的性质求得最小值即可得到答案【详解】(1)不等式或或,解得或,即x0,所以原不等式的解集为(2)要使函数的定义域为R,只要的最小值大于0即可,又,当且仅当时取等,只需最小值,即所以实数a的取值范围是【点睛】本题考查绝对值不等式的解法,考查利用绝对值三角不等式求最值,属基础题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁