《江西省南昌市第一中学2022-2023学年高三下学期联合考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江西省南昌市第一中学2022-2023学年高三下学期联合考试数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知m,n是两条不同的直线,是两个不同的平面,给出四个命题:若,则;若,则;若,则;若,则其中正确的是( )ABCD2函数
2、的大致图象为( )ABCD3赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为周髀算经一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )ABCD4已知复数,满足,则( )A1BCD55已知等差数列的前n项和为,且,则( )A4B8C16D26已知集合,集合,则等于( )ABCD7已知函数,若,则a的取值范围为( )ABC
3、D8函数的图象大致为( )ABCD9下列函数中,在定义域上单调递增,且值域为的是( )ABCD10函数的图象如图所示,则它的解析式可能是( )ABCD11若复数满足,复数的共轭复数是,则( )A1B0CD12已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知抛物线的焦点为,直线与抛物线相切于点,是上一点(不与重合),若以线段为直径的圆恰好经过,则点到抛物线顶点的距离的最小值是_.14若点在直线上,则的值等于_ .15已知向量满足,则_.16如图在三棱柱中,点为线段上一动点,则的最小值为_.三、解答题:共70分。
4、解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四面体中,.(1)求证:平面平面;(2)若,求四面体的体积.18(12分)已知直线与椭圆恰有一个公共点,与圆相交于两点. (I)求与的关系式;(II)点与点关于坐标原点对称.若当时,的面积取到最大值,求椭圆的离心率.19(12分)设函数.()讨论函数的单调性;()若函数有两个极值点,求证:.20(12分)以平面直角坐标系的原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,已知曲线,曲线(为参数),求曲线交点的直角坐标.21(12分)如图,平面分别是上的动点,且.(1)若平面与平面的交线为,求证:;(2)当
5、平面平面时,求平面与平面所成的二面角的余弦值.22(10分)已知椭圆的左、右顶点分别为、,上、下顶点分别为,为其右焦点,且该椭圆的离心率为;()求椭圆的标准方程;()过点作斜率为的直线交椭圆于轴上方的点,交直线于点,直线与椭圆的另一个交点为,直线与直线交于点若,求取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据面面垂直的判定定理可判断;根据空间面面平行的判定定理可判断;根据线面平行的判定定理可判断;根据面面垂直的判定定理可判断.【详解】对于,若,两平面相交,但不一定垂直,故错误;对于,若,则,故正确;对于,
6、若,当,则与不平行,故错误;对于,若,则,故正确;故选:D【点睛】本题考查了线面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,属于基础题.2、A【解析】利用特殊点的坐标代入,排除掉C,D;再由判断A选项正确.【详解】,排除掉C,D;,.故选:A【点睛】本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.3、D【解析】设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.【详解】由题意,设,则,即小正六边形的边长为,所以,在中,由余弦定理得,即,解得,所以,大正六边形的边长为,所以,小正六
7、边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概率.故选:D.【点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题4、A【解析】首先根据复数代数形式的除法运算求出,求出的模即可【详解】解:,故选:A【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题5、A【解析】利用等差的求和公式和等差数列的性质即可求得.【详解】.故选:.【点睛】本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.6、B【解析】求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】该题考查的是有关集合的运算的问题,涉及到的
8、知识点有一元二次不等式的解法,集合的运算,属于基础题目.7、C【解析】求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式【详解】由得,在时,是增函数,是增函数,是增函数,是增函数,由得,解得故选:C.【点睛】本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解8、A【解析】用偶函数的图象关于轴对称排除,用排除,用排除.故只能选.【详解】因为 ,所以函数为偶函数,图象关于轴对称,故可以排除;因为,故排除,因为由图象知,排除.故选:A【点睛】本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题.9、B【解析】分别作出各个选
9、项中的函数的图象,根据图象观察可得结果.【详解】对于,图象如下图所示:则函数在定义域上不单调,错误;对于,的图象如下图所示:则在定义域上单调递增,且值域为,正确;对于,的图象如下图所示:则函数单调递增,但值域为,错误;对于,的图象如下图所示:则函数在定义域上不单调,错误.故选:.【点睛】本题考查函数单调性和值域的判断问题,属于基础题.10、B【解析】根据定义域排除,求出的值,可以排除,考虑排除.【详解】根据函数图象得定义域为,所以不合题意;选项,计算,不符合函数图象;对于选项, 与函数图象不一致;选项符合函数图象特征.故选:B【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,
10、常见方法为排除法.11、C【解析】根据复数代数形式的运算法则求出,再根据共轭复数的概念求解即可【详解】解:,则,故选:C【点睛】本题主要考查复数代数形式的运算法则,考查共轭复数的概念,属于基础题12、B【解析】由题意可得,且,故有,再根据,求得,由可得的最大值,检验的这个值满足条件【详解】解:函数,为的零点,为图象的对称轴,且,、,即为奇数在,单调,由可得的最大值为1当时,由为图象的对称轴,可得,故有,满足为的零点,同时也满足满足在上单调,故为的最大值,故选:B【点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题二、填空题:本题共4小题,每小题5分,共20
11、分。13、【解析】根据抛物线,不妨设,取 ,通过求导得, ,再根据以线段为直径的圆恰好经过,则 ,得到,两式联立,求得点N的轨迹,再求解最值.【详解】因为抛物线,不妨设,取 ,所以,即,所以 ,因为以线段为直径的圆恰好经过,所以 ,所以,所以,由 ,解得,所以点在直线 上,所以当时, 最小,最小值为.故答案为:2【点睛】本题主要考查直线与抛物线的位置关系直线的交轨问题,还考查了运算求解的能力,属于中档题.14、【解析】根据题意可得,再由,即可得到结论.【详解】由题意,得,又,解得,当时,则,此时;当时,则,此时,综上,.故答案为:.【点睛】本题考查诱导公式和同角的三角函数的关系,考查计算能力,
12、属于基础题.15、1【解析】首先根据向量的数量积的运算律求出,再根据计算可得;【详解】解:因为,所以又所以所以故答案为:【点睛】本题考查平面向量的数量积的运算,属于基础题.16、【解析】把 绕着进行旋转,当四点共面时,运用勾股定理即可求得的最小值.【详解】将以为轴旋转至与面在一个平面,展开图如图所示,若,三点共线时最小为,为直角三角形,故答案为:【点睛】本题考查了空间几何体的翻折,平面内两点之间线段最短,解直角三角形进行求解,考查了空间想象能力和计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)取中点,连接,根据等
13、腰三角形的性质得到,利用全等三角形证得,由此证得平面,进而证得平面平面.(2)由(1)知平面,即是四面体的面上的高,结合锥体体积公式,求得四面体的体积.【详解】(1)证明:如图,取中点,连接,由则,则,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面体的面上的高,且.在中,由勾股定理易知故四面体的体积【点睛】本小题主要考查面面垂直的证明,考查锥体体积计算,考查空间想象能力和逻辑推理能力,属于中档题.18、()(II)【解析】(I)联立直线与椭圆的方程,根据判别式等于0,即可求出结果;()因点与点关于坐标原点对称,可得的面积是的面积的两倍,再由当时,的面积取到最大值,可得,进而可得原
14、点到直线的距离,再由点到直线的距离公式,以及(I)的结果,即可求解.【详解】(I)由,得,则 化简整理,得; ()因点与点关于坐标原点对称,故的面积是的面积的两倍.所以当时,的面积取到最大值,此时,从而原点到直线的距离, 又,故. 再由(I),得,则. 又,故,即, 从而,即.【点睛】本题主要考查直线与椭圆的位置关系,以及椭圆的简单性质,通常需要联立直线与椭圆方程,结合韦达定理、判别式等求解,属于中档试题.19、()见解析()见解析【解析】()求导得到,讨论,三种情况得到单调区间.()设,要证,即证,设,根据函数单调性得到证明.【详解】() , 令,(1)当,即时,在上单调递增; (2)当,即
15、时,设的两根为(),若,时,所以在和上单调递增, 时,所以在上单调递减,若,时,所以在上单调递减, 时,所以在上单调递增. 综上,当时,在上单调递增;当时, 在和上单调递增,在上单调递减;当时,在上单调递减,在上单调递增. ()不妨设,要证,即证,即证,由()可知,可得,所以有, 令,所以在单调递增, 所以, 因为,所以,所以.【点睛】本题考查了函数单调性,证明不等式,意在考查学生的分类讨论能力和计算能力.20、【解析】利用极坐标方程与普通方程、参数方程间的互化公式化简即可.【详解】因为,所以,所以曲线的直角坐标方程为.由,得,所以曲线的普通方程为.由,得,所以(舍),所以,所以曲线的交点坐标
16、为.【点睛】本题考查极坐标方程与普通方程,参数方程与普通方程间的互化,考查学生的计算能力,是一道容易题.21、(1)见解析;(2)【解析】(1)首先由线面平行的判定定理可得平面,再由线面平行的性质定理即可得证;(2)以点为坐标原点,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,利用空间向量法求出二面角的余弦值;【详解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因为平面,所以,又,所以平面,所以,又,所以.若平面平面,则平面,所以,由且,又,所以.以点为坐标原点,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,则 ,设则由,可得,即,所
17、以可得,所以,设平面的一个法向量为,则,取,得所以易知平面的法向量为,设平面与平面所成的二面角为,则,结合图形可知平面与平面所成的二面角的余弦值为.【点睛】本题考查线面平行的判定定理及性质定理的应用,利用空间向量法求二面角,解题时要认真审题,注意空间思维能力的培养,属于中档题22、();(),【解析】()由题意可得,的坐标,结合椭圆离心率,及隐含条件列式求得,的值,则椭圆方程可求;()设直线,求得的坐标,再设直线,求出点的坐标,写出的方程,联立与,可求出的坐标,由,可得关于的函数式,由单调性可得取值范围【详解】(),由,得,又,解得:,椭圆的标准方程为;()设直线,则与直线的交点,又,设直线,联立,消可得解得,联立,得,直线,联立,解得,函数在上单调递增,【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查运算求解能力,意在考查学生对这些知识的理解掌握水平和分析推理计算能力