辽宁省抚顺市新宾县重点达标名校2023年中考五模数学试题含解析.doc

上传人:茅**** 文档编号:88312455 上传时间:2023-04-25 格式:DOC 页数:23 大小:1.07MB
返回 下载 相关 举报
辽宁省抚顺市新宾县重点达标名校2023年中考五模数学试题含解析.doc_第1页
第1页 / 共23页
辽宁省抚顺市新宾县重点达标名校2023年中考五模数学试题含解析.doc_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《辽宁省抚顺市新宾县重点达标名校2023年中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省抚顺市新宾县重点达标名校2023年中考五模数学试题含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图所示,点E在AC的延长线上,下列条件中能判断ABCD的是( )A3=ABD=DCEC1=2DD+ACD=1802在,,则的值为( )ABCD3将一把直尺和一块含30和60角的三角板ABC按如图所示的位置放置,如果CDE=40,那么BAF的大小为()A10B15C20D254如图,小刚从山脚A出发,沿坡

2、角为的山坡向上走了300米到达B点,则小刚上升了( )A米B米C米D米52的绝对值是( )A2BCD6许昌市2017年国内生产总值完成1915.5亿元,同比增长9.3%,增速居全省第一位,用科学记数法表示1915.5亿应为()A1915.15108B19.1551010C1.91551011D1.915510127如图,在平面直角坐标系中,P的圆心坐标是(3,a)(a3),半径为3,函数yx的图象被P截得的弦AB的长为4,则a的值是()A4B3C3D8如图,ABC是O的内接三角形,ADBC于D点,且AC=5,CD=3,BD=4,则O的直径等于( )A5BCD79在同一直角坐标系中,函数y=kx

3、-k与(k0)的图象大致是 ( )ABCD10下列事件中,属于不确定事件的是( )A科学实验,前100次实验都失败了,第101次实验会成功B投掷一枚骰子,朝上面出现的点数是7点C太阳从西边升起来了D用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形二、填空题(本大题共6个小题,每小题3分,共18分)11甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从20142018年,这两家公司中销售量增长较快的是_公司(填“甲”或“乙”)12点A(3,y1),B(2,y2),C(3,y3)在抛物线y=2x24x+c上,则y1,y2,y3的大小关系是_13当 _时

4、,二次函数 有最小值_.14如图,在O中,直径AB弦CD,A=28,则D=_15不等式4x的解集为_16如图,正方形ABCD中,M为BC上一点,MEAM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE的长为_.三、解答题(共8题,共72分)17(8分)如图,BAO=90,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CDBP交半圆P于另一点D,BEAO交射线PD于点E,EFAO于点F,连接BD,设AP=m(1)求证:BDP=90(2)若m=4,求BE的长(3)在点P的整个运动过程中当AF=3CF时,求出所有符合条件的m的值当tanDBE=时,直接写出CDP

5、与BDP面积比18(8分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)ABFDCE;四边形ABCD是矩形19(8分)某商店老板准备购买A、B两种型号的足球共100只,已知A型号足球进价每只40元,B型号足球进价每只60元(1)若该店老板共花费了5200元,那么A、B型号足球各进了多少只;(2)若B型号足球数量不少于A型号足球数量的,那么进多少只A型号足球,可以让该老板所用的进货款最少?20(8分)如图,已知,求证:21(8分)我们知道中,如果,那么当时,的面积最大为6;(1)若四边形中,且,直接写出满足什么位置关系时四边形面积最大?并直接写出最大面积.

6、(2)已知四边形中,求为多少时,四边形面积最大?并求出最大面积是多少?22(10分)如图,已知在ABC中,AB=AC=5,cosB=,P是边AB上一点,以P为圆心,PB为半径的P与边BC的另一个交点为D,联结PD、AD(1)求ABC的面积;(2)设PB=x,APD的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果APD是直角三角形,求PB的长23(12分)如图,在菱形ABCD中,作于E,BFCD于F,求证:24如图,已知矩形ABCD中,AB=3,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s)(1

7、)若m=5,求当P,E,B三点在同一直线上时对应的t的值(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于2,求所有这样的m的取值范围参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】由平行线的判定定理可证得,选项A,B,D能证得ACBD,只有选项C能证得ABCD注意掌握排除法在选择题中的应用【详解】A.3=A,本选项不能判断ABCD,故A错误;B.D=DCE,ACBD.本选项不能判断ABCD,故B错误;C.1=2,ABCD.本选项能判断ABCD,故C正确;D.D+ACD=180,ACBD.故本选项不能判断ABCD,故D错误

8、.故选:C.【点睛】考查平行线的判定,掌握平行线的判定定理是解题的关键.2、A【解析】本题可以利用锐角三角函数的定义求解即可【详解】解:tanA=,AC=2BC,tanA=故选:A【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 3、A【解析】先根据CDE=40,得出CED=50,再根据DEAF,即可得到CAF=50,最后根据BAC=60,即可得出BAF的大小【详解】由图可得,CDE=40 ,C=90,CED=50,又DEAF,CAF=50,BAC=60,BAF=6050=10,故选A.【点睛】本题考查了平行线的性质,熟练掌握这一点是解题的关键.4、A【解析】利用锐角

9、三角函数关系即可求出小刚上升了的高度【详解】在RtAOB中,AOB=90,AB=300米,BO=ABsin=300sin米故选A【点睛】此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键5、A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点2到原点的距离是2,所以2的绝对值是2,故选A6、C【解析】科学记数法的表示形式为的形式,其中为整数确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同当原数绝对值1时,是正数;当原数的绝对值0是时,一次函数y=kx-k的图象经过一、三、四象

10、限,反比例函数(k0)的图象经过一、三象限;当k0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数(k0)的图象经过二、四象限;根据选项可知,D选项满足条件.故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.10、A【解析】根据事件发生的可能性大小判断相应事件的类型即可【详解】解:A、是随机事件,故A符合题意;B、是不可能事件,故B不符合题意;C、是不可能事件,故C不符合题意;D、是必然事件,故D不符合题意;故选A【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可

11、能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件二、填空题(本大题共6个小题,每小题3分,共18分)11、甲【解析】根据甲,乙两公司折线统计图中2014年、2018年的销售量,计算即可得到增长量;根据两个统计图中甲,乙两公司销售增长量即可确定答案.【详解】解:从折线统计图中可以看出:甲公司2014年的销售量约为100辆,2018年约为600辆,则从20142018年甲公司增长了500辆;乙公司2014年的销售量为100辆,2018年的销售量为400辆,则从20142018年,乙公司中销售量增长了300辆所以这两家公司中销售量增长较快的是

12、甲公司,故答案为:甲【点睛】本题考查了折线统计图的相关知识,由统计图得到关键信息是解题的关键;12、y2y3y1【解析】把点的坐标分别代入抛物线解析式可分别求得y1、y2、y3的值,比较可求得答案【详解】y=2x2-4x+c,当x=-3时,y1=2(-3)2-4(-3)+c=30+c,当x=2时,y2=222-42+c=c,当x=3时,y3=232-43+c=6+c,c6+c30+c,y2y3y1,故答案为y2y3y1【点睛】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键13、1 5 【解析】二次函数配方,得:,所以,当x1时,y有最小值5,故答案为1

13、,5. 14、34【解析】分析:首先根据垂径定理得出BOD的度数,然后根据三角形内角和定理得出D的度数详解:直径AB弦CD, BOD=2A=56, D=9056=34点睛:本题主要考查的是圆的垂径定理,属于基础题型求出BOD的度数是解题的关键15、x1【解析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x182x,移项合并得:3x12,解得:x1,故答案为:x1【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.16、 【解析】由勾股定理可先求得AM,利用条件可证得ABMEMA,则可求得AE的长,进一步可求得DE【详

14、解】详解:正方形ABCD,B=90AB=12,BM=5,AM=1MEAM,AME=90=BBAE=90,BAM+MAE=MAE+E,BAM=E,ABMEMA,=,即=,AE=,DE=AEAD=12=故答案为【点睛】本题主要考查相似三角形的判定和性质,利用条件证得ABMEMA是解题的关键三、解答题(共8题,共72分)17、(1)详见解析;(2)的长为1;(3)m的值为或;与面积比为或【解析】由知,再由知、,据此可得,证即可得;易知四边形ABEF是矩形,设,可得,证得,在中,由,列方程求解可得答案;分点C在AF的左侧和右侧两种情况求解:左侧时由知、,在中,由可得关于m的方程,解之可得;右侧时,由知

15、、,利用勾股定理求解可得作于点G,延长GD交BE于点H,由知,据此可得,再分点D在矩形内部和外部的情况求解可得【详解】如图1,、,四边形ABEF是矩形,设,则,在中,即,解得:,的长为1如图1,当点C在AF的左侧时,则,在中,由可得,解得:负值舍去;如图2,当点C在AF的右侧时,在中,由可得,解得:负值舍去;综上,m的值为或;如图3,过点D作于点G,延长GD交BE于点H,又,且,当点D在矩形ABEF的内部时,由可设、,则,则;如图4,当点D在矩形ABEF的外部时,由可设、,则,则,综上,与面积比为或【点睛】本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾

16、股定理、三角形的面积等知识点18、(1)见解析;(2)见解析.【解析】(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC利用“SSS”得ABFDCE(2)平行四边形的性质得到两边平行,从而B+C=180利用全等得B=C,从而得到一个直角,问题得证.【详解】(1)BE=CF,BF=BE+EF,CE=CF+EF,BF=CE四边形ABCD是平行四边形,AB=DC在ABF和DCE中,AB=DC,BF=CE,AF=DE,ABFDCE(2)ABFDCE,B=C四边形ABCD是平行四边形,ABCDB+C=180B=C=90平行四边形ABCD是矩形19、(1)A型足球进了40个,B型足球进了6

17、0个;(2)当x=60时,y最小=4800元.【解析】(1)设A型足球x个,则B型足球(100-x)个,根据该店老板共花费了5200元列方程求解即可;(2)设进货款为y元,根据题意列出函数关系式,根据B型号足球数量不少于A型号足球数量的求出x的取值范围,然后根据一次函数的性质求解即可.【详解】解:(1)设A型足球x个,则B型足球(100-x)个, 40x +60(100-x)=5200 ,解得:x=40 , 100-x=100-40=60个,答:A型足球进了40个,B型足球进了60个(2)设A型足球x个,则B型足球(100-x)个,100-x ,解得:x60 ,设进货款为y元,则y=40x+6

18、0(100-x)=-20x+6000 ,k=-20,y随x的增大而减小,当x=60时,y最小=4800元.【点睛】本题考查了一元一次方程的应用,一次函数的应用,仔细审题,找出解决问题所需的数量关系是解答本题的关键.20、证明见解析【解析】根据等式的基本性质可得,然后利用SAS即可证出,从而证出结论【详解】证明:,即,在和中,【点睛】此题考查的是全等三角形的判定及性质,掌握利用SAS判定两个三角形全等和全等三角形的对应边相等是解决此题的关键21、 (1)当,时有最大值1;(2)当时,面积有最大值32.【解析】(1)由题意当ADBC,BDAD时,四边形ABCD的面积最大,由此即可解决问题(2)设B

19、D=x,由题意:当ADBC,BDAD时,四边形ABCD的面积最大,构建二次函数,利用二次函数的性质即可解决问题【详解】(1) 由题意当ADBC,BDAD时,四边形ABCD的面积最大,最大面积为6(16-6)=1故当,时有最大值1;(2)当,时有最大值,设, 由题意:当ADBC,BDAD时,四边形ABCD的面积最大,抛物线开口向下当 时,面积有最大值32.【点睛】本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题22、(1)12(2)y=(0x5)(3)或【解析】试题分析:(1)过点A作AHBC于点H ,根据cosB=求得BH的长,从而根据已知可求得AH的长

20、,BC的长,再利用三角形的面积公式即可得;(2)先证明BPDBAC,得到=,再根据 ,代入相关的量即可得;(3)分情况进行讨论即可得.试题解析:(1)过点A作AHBC于点H ,则AHB=90,cosB= ,cosB=,AB=5,BH=4,AH=3,AB=AC,BC=2BH=8,SABC=83=12(2)PB=PD,B=PDB,AB=AC,B=C,C=PDB,BPDBAC, ,即,解得=, , ,解得y=(0x5); (3)APD90,过C作CEAB交BA延长线于E,可得cosCAE= ,当ADP=90时,cosAPD=cosCAE=,即 ,解得x=; 当PAD=90时, ,解得x=,综上所述,

21、PB=或.【点睛】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.23、见解析【解析】由菱形的性质可得,然后根据角角边判定,进而得到.【详解】证明:菱形ABCD,在与中,【点睛】本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.24、 (1) 1;(1) m【解析】(1)在RtABP中利用勾股定理即可解决问题;(1)分两种情形求出AD的值即可解决问题:如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.【详

22、解】解:(1):(1)如图1中,设PD=t则PA=5-tP、B、E共线,BPC=DPC,ADBC,DPC=PCB,BPC=PCB,BP=BC=5,在RtABP中,AB1+AP1=PB1,31+(5-t)1=51,t=1或9(舍弃),t=1时,B、E、P共线 (1)如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1作EQBC于Q,EMDC于M则EQ=1,CE=DC=3易证四边形EMCQ是矩形,CM=EQ=1,M=90,EM=,DAC=EDM,ADC=M,ADCDME,AD=,如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1作EQBC于Q,延长QE交AD于M则EQ=1,CE=DC=3在RtECQ中,QC=DM=,由DMECDA,AD=,综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于1,这样的m的取值范围m【点睛】本题考查四边形综合问题,根据题意作出图形,熟练运用勾股定理和相似三角形的性质是本题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁