《湖北省随州市随县2023届中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《湖北省随州市随县2023届中考数学模拟精编试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图所示,在ABC中,C=90,AC=4,BC=3,将ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为( )A2BCD2将一副三角板和一张对边平行
2、的纸条按如图摆放,两个三角板的一直角边重合,含30角的直角三角板的斜边与纸条一边重合,含45角的三角板的一个顶点在纸条的另一边上,则1的度数是()A15B22.5C30D453如图,AB是O的弦,半径OCAB 于D,若CD=2,O的半径为5,那么AB的长为()A3B4C6D84在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A众数B方差C平均数D中位数5下列计算正确的是()A2m+3n=5mn Bm2m3=m6 Cm8m6=m2 D(m)3=m36将一副直角三角尺如图放
3、置,若AOD=20,则BOC的大小为( )A140B160C170D1507方程的解为()Ax=1Bx=1Cx=2Dx=38如图,矩形纸片中,将沿折叠,使点落在点处,交于点,则的长等于( )ABCD9如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(1,1),点B在x轴正半轴上,点D在第三象限的双曲线上,过点C作CEx轴交双曲线于点E,连接BE,则BCE的面积为()A5B6C7D810正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为( )A8BCD11二次函数y=(x+2)21的图象的对称轴是
4、()A直线x=1B直线x=1C直线x=2D直线x=212下列各式中计算正确的是ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13已知,(),请用计算器计算当时,、的若干个值,并由此归纳出当时,、间的大小关系为_.14如图,在菱形纸片中,将菱形纸片翻折,使点落在的中点处,折痕为,点,分别在边,上,则的值为_15如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为_16图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙)图乙种,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的
5、平行线交叉得到,则该菱形的周长为_cm17点A(a,3)与点B(4,b)关于原点对称,则a+b()A1B4C4D118在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a),如图,若曲线y(x0)与此正方形的边有交点,则a的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少
6、名学生能在1.5小时内完成家庭作业?20(6分)如图,ABC和ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EFCD与BE相等?若相等,请证明;若不相等,请说明理由;若BAC=90,求证:BF1+CD1=FD121(6分)在平面直角坐标系xOy中,函数(x0)的图象与直线l1:yxb交于点A(3,a2)(1)求a,b的值;(2)直线l2:yxm与x轴交于点B,与直线l1交于点C,若SABC6,求m的取值范围22(8分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.(1)给出以下条件;OBOD,12,
7、OEOF,请你从中选取两个条件证明BEODFO;(2)在(1)条件中你所选条件的前提下,添加AECF,求证:四边形ABCD是平行四边形23(8分)如图,分别延长ABCD的边到,使,连接EF,分别交于,连结求证:24(10分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率25(10分)春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率.26(12分)我国古代数学著作增删算法统宗
8、记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺求绳索长和竿长27(12分)某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,
9、赔多少;若赚钱,赚多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】解:连接BD在ABC中,C=90,AC=4,BC=3,AB=2将ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,AE=4,DE=3,BE=2在RtBED中,BD=故选C点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系题目整体较为简单,适合随堂训练2、A【解析】试题分析:如图,过A点作ABa,1=2,ab,ABb,3=4=30,而2+3=45,2=15,1=15故选A考点:
10、平行线的性质3、D【解析】连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1【详解】连接OAO的半径为5,CD=2,OD=5-2=3,即OD=3;又AB是O的弦,OCAB,AD=AB;在直角三角形ODC中,根据勾股定理,得AD=4,AB=1故选D【点睛】本题考查了垂径定理、勾股定理解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度4、D【解析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成
11、绩参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.5、C【解析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解【详解】解:A、2m与3n不是同类项,不能合并,故错误;B、m2m3=m5,故错误;C、正确;D、(-m)3=-m
12、3,故错误;故选:C【点睛】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.6、B【解析】试题分析:根据AOD=20可得:AOC=70,根据题意可得:BOC=AOB+AOC=90+70=160.考点:角度的计算7、B【解析】观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】方程的两边同乘(x3)(x+1),得(x2) (x+1)=x(x3),解得x=1.检验:把x=1代入(x3)(x+1)=-40.原方程的解为:x=1.故选B.【点睛】本题考查的知识点是解分式方程,解题关键是注意解得的解要进行
13、检验.8、B【解析】由折叠的性质得到AE=AB,E=B=90,易证RtAEFRtCDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在RtCDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可【详解】矩形ABCD沿对角线AC对折,使ABC落在ACE的位置,AE=AB,E=B=90,又四边形ABCD为矩形,AB=CD,AE=DC,而AFE=DFC,在AEF与CDF中, ,AEFCDF(AAS),EF=DF;四边形ABCD为矩形,AD=BC=6,CD=AB=4,RtAEFRtCDF,FC=FA,设FA=x,则FC=x,FD=6-x,在RtC
14、DF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x,则FD6-x=.故选B【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等也考查了矩形的性质和三角形全等的判定与性质以及勾股定理9、C【解析】作辅助线,构建全等三角形:过D作GHx轴,过A作AGGH,过B作BMHC于M,证明AGDDHCCMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论【详解】解:过D作GHx轴,过A作AGGH,过B作BMHC于M,设D(x,),四边形ABCD是正方形,ADCDBC,ADCDCB90,易得AGDDHCC
15、MB(AAS),AGDHx1,DGBM,GQ1,DQ,DHAGx1,由QG+DQBMDQ+DH得:11x,解得x2,D(2,3),CHDGBM14,AGDH1x1,点E的纵坐标为4,当y4时,x,E(,4),EH2,CECHHE4,SCEBCEBM47;故选C【点睛】考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题10、D【解析】根据正方形的边长,根据勾股定理求出AR,求出ABRDRS,求出DS,根据面积公式求出即可【详解】正方形ABCD的面积为16,正方形BPQR面积为25,正方形ABCD的边长为4,正方形BPQR的
16、边长为5,在RtABR中,AB=4,BR=5,由勾股定理得:AR=3,四边形ABCD是正方形,A=D=BRQ=90,ABR+ARB=90,ARB+DRS=90,ABR=DRS,A=D,ABRDRS,DS=,阴影部分的面积S=S正方形ABCD-SABR-SRDS=44-43-1=,故选:D【点睛】本题考查了正方形的性质,相似三角形的性质和判定,能求出ABR和RDS的面积是解此题的关键11、D【解析】根据二次函数顶点式的性质解答即可.【详解】y=(x+2)21是顶点式,对称轴是:x=-2,故选D.【点睛】本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌
17、握顶点式的性质是解题关键.12、B【解析】根据完全平方公式对A进行判断;根据幂的乘方与积的乘方对B、C进行判断;根据合并同类项对D进行判断【详解】A. ,故错误. B. ,正确.C. ,故错误.D. , 故错误.故选B.【点睛】考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】试题分析:当n=3时,A=0.3178,B=1,AB;当n=4时,A=0.2679,B=0.4142,AB;当n=5时,A=0.2631,B=0.3178,AB;当n=6时,A=0.2134,B=0.2679,AB;以
18、此类推,随着n的增大,a在不断变小,而b的变化比a慢两个数,所以可知当n3时,A、B的关系始终是AB.14、【解析】过点作,交延长线于,连接,交于,根据折叠的性质可得,根据同角的余角相等可得,可得,由平行线的性质可得,根据的三角函数值可求出、的长,根据为中点即可求出的长,根据余弦的定义的值即可得答案.【详解】过点作,交延长线于,连接,交于,四边形是菱形,将菱形纸片翻折,使点落在的中点处,折痕为,为中点,.故答案为【点睛】本题考查了折叠的性质、菱形的性质及三角函数的定义,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,熟练掌握三角函数的定义并熟记特殊
19、角的三角函数值是解题关键.15、(,1)【解析】如图作AFx轴于F,CEx轴于E四边形ABCD是正方形,OA=OC,AOC=90,COE+AOF=90,AOF+OAF=90,COE=OAF,在COE和OAF中,COEOAF,CE=OF,OE=AF,A(1,),CE=OF=1,OE=AF=,点C坐标(,1),故答案为(,1)点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.16、【解析】试题分析:根据,EF=4可得:A
20、B=和BC的长度,根据阴影部分的面积为54可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为,则菱形的周长为:4=.考点:菱形的性质.17、1【解析】据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b即可【详解】点A(a,3)与点B(4,b)关于原点对称,a=4,b=3,a+b=1,故选D【点睛】考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.18、 【解析】因为A点的坐标为(a,a),则C(a1,a1),根据题意只要分别求出当A点或C点在曲线上时a的值即可得到答案.【详解】解:A点的坐标为(a,a),C(a1,a1),当C在双曲线y=时,则a
21、1=,解得a=+1;当A在双曲线y=时,则a=,解得a=,a的取值范围是a+1故答案为a+1【点睛】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于根据题意找到关键点,然后将关键点的坐标代入反比例函数求得确定值即可.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)补图见解析;(2)27;(3)1800名【解析】(1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;(2)用360乘以对应的比例即可求解;(3)用总人数乘以对应的百分比即可求解【详解】(1)抽取的总人数是:1025%=40(人),在
22、B类的人数是:4030%=12(人).;(2)扇形统计图扇形D的圆心角的度数是:360=27;(3)能在1.5小时内完成家庭作业的人数是:2000(25%+30%+35%)=1800(人).考点:条形统计图、扇形统计图20、(1)CD=BE,理由见解析;(1)证明见解析.【解析】(1)由两个三角形为等腰三角形可得ABAC,AEAD,由BACEAD可得EABCAD,根据“SAS”可证得EABCAD,即可得出结论;(1)根据(1)中结论和等腰直角三角形的性质得出EBF90,在RtEBF中由勾股定理得出BF1BE1EF1,然后证得EFFD,BECD,等量代换即可得出结论【详解】解:(1)CDBE,理
23、由如下:ABC和ADE为等腰三角形,ABAC,ADAE,EADBAC,EADBADBACBAD,即EABCAD,在EAB与CAD中,EABCAD,BECD;(1)BAC90,ABC和ADE都是等腰直角三角形,ABFC45,EABCAD,EBAC,EBA45,EBF90,在RtBFE中,BF1BE1EF1,AF平分DE,AEAD,AF垂直平分DE,EFFD,由(1)可知,BECD,BF1CD1FD1【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键21、(1)a=3,b=-2;(2) m8或m2【解析】(1)把A点坐标代
24、入反比例解析式确定出a的值,确定出A坐标,代入一次函数解析式求出b的值;(2)分别求出直线l1与x轴交于点D,再求出直线l2与x轴交于点B,从而得出直线l2与直线l1交于点C坐标,分两种情况进行讨论:当SABC=SBCD+SABD=6时,利用三角形的面积求出m的值,当SABC=SBCDSABD=6时,利用三角形的面积求出m的值,从而得出m的取值范围【详解】(1)点A在图象上a3A(3,1)点A在yxb图象上13bb2解析式yx2(2)设直线yx2与x轴的交点为DD(2,0)当点C在点A的上方如图(1)直线yxm与x轴交点为BB(m,0)(m3)直线yxm与直线yx2相交于点C解得:CSABCS
25、BCDSABD6m8若点C在点A下方如图2SABCSBCDSABD6m2综上所述,m8或m2【点睛】此题考查了一次函数与反比例函数的交点问题,三角形的面积,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键22、(1)见解析;(2)见解析.【解析】试题分析:(1)选取,利用ASA判定BEODFO;也可选取,利用AAS判定BEODFO;还可选取,利用SAS判定BEODFO;(2)根据BEODFO可得EOFO,BODO,再根据等式的性质可得AOCO,根据两条对角线互相平分的四边形是平行四边形可得结论试题解析:证明:(1)选取,在BEO和DFO中,BEODFO(ASA);(2)由(1)得:BEO
26、DFO,EOFO,BODO,AECF,AOCO,四边形ABCD是平行四边形点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形23、证明见解析【解析】分析:根据平行四边形的性质以及已知的条件得出EGD和FHB全等,从而得出DG=BH,从而说明AG和CH平行且相等,得出四边形AHCG为平行四边形,从而得出答案详解:证明:在ABCD中,又,又,四边形AGCH为平行四边形, 点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG为平行四边形24、.【解析】试题分析:先根据题意
27、画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.试题解析:解:画树状图如答图:共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,P(A,C两个区域所涂颜色不相同)=.考点:1画树状图或列表法;2概率25、小王在这两年春节收到的年平均增长率是【解析】增长后的量=增长前的量(1+增长率),2018年收到微信红包金额400(1+x)元,在2018年的基础上再增长x,就是2019年收到微信红包金额400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可【详解】解:设小王在这两年春节收到的红包的年平均
28、增长率是.依题意得:解得(舍去).答:小王在这两年春节收到的年平均增长率是【点睛】本题考查了一元二次方程的应用对于增长率问题,增长前的量(1+年平均增长率)年数=增长后的量26、绳索长为20尺,竿长为15尺.【解析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组,解之即可得出结论【详解】设绳索长、竿长分别为尺,尺,依题意得:解得:,.答:绳索长为20尺,竿长为15尺.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键27、赚了520元【解析】(1)设第一次购书的单价为x元,根据第一次用
29、1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x的值即可得出答案;(2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目(实际售价当次进价)求出二次赚的钱数,再分别相加即可得出答案【详解】(1)设第一次购书的单价为x元,根据题意得:+10,解得:x5,经检验,x5是原方程的解,答:第一次购书的进价是5元;(2)第一次购书为12005240(本),第二次购书为240+10250(本),第一次赚钱为240(75)480(元),第二次赚钱为200(751.2)+50(70.451.2)40(元),所以两次共赚钱480+40520(元),答:该老板两次售书总体上是赚钱了,共赚了520元【点睛】此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键