《福建省永春汤城中学2023届中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《福建省永春汤城中学2023届中考数学仿真试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()Am2Bm2Cm2Dm22若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x21012y83010则抛物线的顶点
2、坐标是()A(1,3)B(0,0)C(1,1)D(2,0)3小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25 ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克若设早上葡萄的价格是 x 元/千克,则可列方程( )ABCD4如图,直角坐标平面内有一点,那么与轴正半轴的夹角的余切值为( )A2BCD53的相反数是( )ABCD67的相反数是( )A7B7CD7 的相反数是()ABCD28函数的自变量x的取值范围是( )ABCD9为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:6,
3、1,x,2,1,1若这组数据的中位数是1,则下列结论错误的是()A方差是8B极差是9C众数是1D平均数是110小轩从如图所示的二次函数y=ax2+bx+c(a0)的图象中,观察得出了下面五条信息:ab0;a+b+c0;b+2c0;a2b+4c0;你认为其中正确信息的个数有A2个B3个C4个D5个11如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G,若BG=,则CEF的面积是()ABCD12如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m,此时距喷水管的水平距离为 1
4、 m,在如图 2 所示的坐标系中,该喷水管水流喷出的高度(m)与水平距离(m)之间的函数关系式是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为_人14用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:第4个图案有白色地面砖_块;第n个图案有白色地面砖_块15在“三角尺拼角”实验中
5、,小明同学把一副三角尺按如图所示的方式放置,则1=_16已知扇形的弧长为2,圆心角为60,则它的半径为_17正方形EFGH的顶点在边长为3的正方形ABCD边上,若AE=x,正方形EFGH的面积为y,则y与x的函数关系式为_18如图,OAC 和BAD 都是等腰直角三角形,ACO=ADB=90,反比例函数y=在第一象限的图象经过点 B,则OAC 与BAD 的面积之差 SOACSBAD 为_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)解不等式组20(6分)如图,在平面直角坐标系中,一次函数yx+3的图象与反比例函数y(x0,k是常数)的图象交于A(a
6、,2),B(4,b)两点求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使ACx轴,BCy轴,连接OA,OB若点P在y轴上,且OPA的面积与四边形OACB的面积相等,求点P的坐标21(6分)如图,ABC内接于O,过点C作BC的垂线交O于D,点E在BC的延长线上,且DECBAC求证:DE是O的切线;若ACDE,当AB8,CE2时,求O直径的长22(8分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上
7、的一个动点,求使为直角三角形的点的坐标.23(8分)对于平面直角坐标系xOy中的任意两点M,N,给出如下定义:点M与点N的“折线距离”为:例如:若点M(-1,1),点N(2,-2),则点M与点N的“折线距离”为:根据以上定义,解决下列问题:已知点P(3,-2)若点A(-2,-1),则d(P,A)= ;若点B(b,2),且d(P,B)=5,则b= ;已知点C(m,n)是直线上的一个动点,且d(P,C)3,求m的取值范围F的半径为1,圆心F的坐标为(0,t),若F上存在点E,使d(E,O)=2,直接写出t的取值范围24(10分)如图,在平面直角坐标系中,四边形的顶点是坐标原点,点在第一象限,点在第
8、四象限,点在轴的正半轴上,且.(1)求点和点的坐标;(2)点是线段上的一个动点(点不与点重合) ,以每秒个单位的速度由点向点运动,过点的直线与轴平行,直线交边或边于点,交边或边于点,设点.运动时间为,线段的长度为,已知时,直线恰好过点 .当时,求关于的函数关系式;点出发时点也从点出发,以每秒个单位的速度向点运动,点停止时点也停止.设的面积为 ,求与的函数关系式;直接写出中的最大值是 .25(10分)如图,已知,求证 26(12分)有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率图表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象图分别表示甲完成的工作量y甲
9、(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象(1)求甲5时完成的工作量;(2)求y甲、y乙与t的函数关系式(写出自变量t的取值范围);(3)求乙提高工作效率后,再工作几个小时与甲完成的工作量相等?27(12分)淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动甲网店销售的A商品的成本为30元/件,网上标价为80元/件“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为“双十一”活动
10、之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据反比例函数的性质,可得m+10,从而得出m的取值范围【详解】函数的图象在其象限内y的值随x值的增大而增大,m+10,解得m-1故选B2、
11、C【解析】分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标详解:当或时,当时, ,解得 ,二次函数解析式为,抛物线的顶点坐标为,故选C点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键3、B【解析】分析:根据数量=,可知第一次买了千克,第二次买了,根据第二次恰好比第一次多买了 0.5 千克列方程即可.详解:设早上葡萄的价格是 x 元/千克,由题意得,.故选B.点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系.4、B【解析】作PAx轴于点A,构造直角三角形,根据三角函数的定义求解【详解】过P作x轴的垂线,交x轴于点A,P(
12、2,4),OA=2,AP=4,.故选B【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.5、D【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1【详解】根据相反数的定义可得:3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.6、B【解析】根据只有符号不同的两个数互为相反数,可得答案【详解】7的相反数是7,故选:B.【点睛】此题考查相反数,解题关键在于掌握其定义.7、A【解析】分析:根据相反数的定义结合实数的性质进行分析判断即可.详解:的相反数是.故选A.点睛:熟记相反数的定义:“只有符号
13、不同的两个数(实数)互为相反数”是正确解答这类题的关键.8、D【解析】根据二次根式的意义,被开方数是非负数【详解】根据题意得,解得故选D【点睛】本题考查了函数自变量的取值范围的确定和分式的意义函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数9、A【解析】根据题意可知x=-1,平均数=(-6-1-1-1+2+1)6=-1,数据-1出现两次最多,众数为-1,极差=1-(-6)=2,方差= (-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+
14、(1+1)2=2故选A10、D【解析】试题分析:如图,抛物线开口方向向下,a1对称轴x,1ab1故正确如图,当x=1时,y1,即a+b+c1故正确如图,当x=1时,y=ab+c1,2a2b+2c1,即3b2b+2c1b+2c1故正确如图,当x=1时,y1,即ab+c1,抛物线与y轴交于正半轴,c1b1,cb1(ab+c)+(cb)+2c1,即a2b+4c1故正确如图,对称轴,则故正确综上所述,正确的结论是,共5个故选D11、A【解析】解:AE平分BAD,DAE=BAE;又四边形ABCD是平行四边形,ADBC,BEA=DAE=BAE,AB=BE=6,BGAE,垂足为G,AE=2AG在RtABG中
15、,AGB=90,AB=6,BG=,AG=2,AE=2AG=4;SABE=AEBG=BE=6,BC=AD=9,CE=BCBE=96=3,BE:CE=6:3=2:1,ABFC,ABEFCE,SABE:SCEF=(BE:CE)2=4:1,则SCEF=SABE=故选A【点睛】本题考查1相似三角形的判定与性质;2平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键12、D【解析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可【详解】解:根据图象,设函数解析式为由图象可知,顶点为(1,3),将点(0,0)代入得解得故答案为:D【点睛】本题考查了是根据实际抛物线形,求函数解析式,解题
16、的关键是正确设出函数解析式二、填空题:(本大题共6个小题,每小题4分,共24分)13、16000【解析】用毕业生总人数乘以“综合素质”等级为A的学生所占的比即可求得结果【详解】A,B,C,D,E五个等级在统计图中的高之比为2:3:3:1:1,该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为80000=16000,故答案为16000.【点睛】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据14、18块 (4n+2)块 【解析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每
17、一个图形都比它前一个图形多4个白色地砖,所以可以得到第n个图案有白色地面砖(4n+2)块【详解】解:第1个图有白色块4+2,第2图有42+2,第3个图有43+2, 所以第4个图应该有44+2=18块, 第n个图应该有(4n+2)块【点睛】此题考查了平面图形,主要培养学生的观察能力和空间想象能力15、1【解析】试题分析:由三角形的外角的性质可知,1=90+30=1,故答案为1考点:三角形的外角性质;三角形内角和定理16、6.【解析】分析: 设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.详解: 设扇形的半径为r,根据题意得:,解得 :r=6故答案为6.点睛: 此题考查弧长公式
18、,关键是根据弧长公式解答.17、y=2x26x+2【解析】由AAS证明DHEAEF,得出DE=AF=x,DH=AE=1-x,再根据勾股定理,求出EH2,即可得到y与x之间的函数关系式【详解】如图所示:四边形ABCD是边长为1的正方形,A=D=20,AD=11+2=20,四边形EFGH为正方形,HEF=20,EH=EF1+1=20,2=1,在AHE与BEF中,DHEAEF(AAS),DE=AF=x,DH=AE=1-x,在RtAHE中,由勾股定理得:EH2=DE2+DH2=x2+(1-x)2=2x2-6x+2;即y=2x2-6x+2(0x1),故答案为y=2x2-6x+2【点睛】本题考查了正方形的
19、性质、全等三角形的判定与性质、勾股定理,本题难度适中,求出y与x之间的函数关系式是解题的关键18、【解析】设OAC和BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图像可得出B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义即可求解.【详解】设OAC和BAD的直角边长分别为a、b,则B点坐标为(a+b,a-b)点B在反比例函数y=在第一象限的图象上,(a+b)(a-b)=a2-b2=3SOACSBAD=a2-b2=【点睛】此题主要考查等腰直角三角形的面积求法和反比例函数k值的定义,解题的关键是熟知等腰直角三角形的性质及反比例函数k值的性质.三、解答题:(本大题共9个小题,共7
20、8分,解答应写出文字说明、证明过程或演算步骤19、1x1【解析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可【详解】解不等式2x+11,得:x1,解不等式x+14(x2),得:x1,则不等式组的解集为1x1【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键20、 (1) 反比例函数的表达式为y(x0);(2) 点P的坐标为(0,4)或(0,4)【解析】(1)根据点A(a,2),B(4,b)在一次函数yx+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OAC
21、BS矩形OECFSOAESOBF,设点P(0,m),根据反比例函数的几何意义解答即可【详解】(1)点A(a,2),B(4,b)在一次函数yx+3的图象上,a+32,b4+3,a2,b1,点A的坐标为(2,2),点B的坐标为(4,1),又点A(2,2)在反比例函数y的图象上,k224,反比例函数的表达式为y(x0);(2)延长CA交y轴于点E,延长CB交x轴于点F,ACx轴,BCy轴,则有CEy轴,CFx轴,点C的坐标为(4,2)四边形OECF为矩形,且CE4,CF2,S四边形OACBS矩形OECFSOAESOBF2422414,设点P的坐标为(0,m),则SOAP2|m|4,m4,点P的坐标为
22、(0,4)或(0,4)【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键21、(1)见解析;(2)O直径的长是4【解析】(1)先判断出BD是圆O的直径,再判断出BDDE,即可得出结论;(2)先判断出ACBD,进而求出BC=AB=8,进而判断出BDCBED,求出BD,即可得出结论【详解】证明:(1)连接BD,交AC于F,DCBE,BCDDCE90,BD是O的直径,DEC+CDE90,DECBAC,BAC+CDE90,弧BC=弧BC,BACBDC,BDC+CDE90,BDDE,DE是O切线;解
23、:(2)ACDE,BDDE,BDACBD是O直径,AFCF,ABBC8,BDDE,DCBE,BCDBDE90,DBCEBD,BDCBED,BD2BCBE81080,BD4即O直径的长是4【点睛】此题主要考查圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,第二问中求出BC=8是解本题的关键22、(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.【解析】分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y
24、=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小把x=-1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标详解:(1)依题意得:,解得:,抛物线的解析式为.对称轴为,且抛物线经过,把、分别代入直线,得,解之得:,直线的解析式为.(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,.即当点到点的距
25、离与到点的距离之和最小时的坐标为.(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).(3)设,又,若点为直角顶点,则,即:解得:,若点为直角顶点,则,即:解得:,若点为直角顶点,则,即:解得:,.综上所述的坐标为或或或.点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题23、(1) 6, 2或4, 1m4;(2)或.【解析】(1)根据“折线距离”的定义直接列式计算;根据“折线距离”的定义列出方程,求解即可;根据“折线距离”的定义列出式子,可知其几何意义是数
26、轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3.(2)由题意可知,根据图像易得t的取值范围【详解】解:(1) b=2或4 ,即数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1m4 (2)设E(x,y),则,如图,若点E在F上,则.【点睛】本题主要考查坐标与图形,正确理解新定义及其几何意义,利用数形结合的思想思考问题是解题关键.24、(1);(2);当时,;当时, ;当时, ;.【解析】(1)根据等腰直角三角形的性质即可解决问题;(2)首先求出直线OA、AB、OC、BC的解析式求出R、Q的坐标,利用两点间距离公式即可解决问题;分三种情形分别求解
27、即可解决问题;利用中的函数,利用配方法求出最值即可;【详解】解:(1)由题意是等腰直角三角形, (2) ,线直的解析式为,直线的解析式时,直线恰好过点.,直线的解析式为,直线的解析式为当时,当时,当时, 当时, 当时,, 时, 的最大值为.当时,.时, 的值最大,最大值为.当时,时, 的最大值为,综上所述,最大值为故答案为.【点睛】本题考查四边形综合题、一次函数的应用、二次函数的应用、等腰直角三角形的性质等知识,解题的关键是学会构建一次函数或二次函数解决实际问题,属于中考压轴题25、见解析【解析】根据ABD=DCA,ACB=DBC,求证ABC=DCB,然后利用AAS可证明ABCDCB,即可证明
28、结论【详解】证明:ABD=DCA,DBC=ACBABD+DBC=DCA+ACB即ABC=DCB在ABC和DCB中 ABCDCB(ASA)AB=DC【点睛】本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证ABCDCB难度不大,属于基础题26、(1)1件;(2)y甲=30t(0t5);y乙=;(3)小时;【解析】(1)根据图可得出总工作量为370件,根据图可得出乙完成了220件,从而可得出甲5小时完成的工作量;(2)设y甲的函数解析式为y=kx+b,将点(0,0),(5,1)代入即可得出y甲与t的函数关系式;设y乙的函数解析式为y=mx(0t2),y=cx+d(2t5),
29、将点的坐标代入即可得出函数解析式;(3)联立y甲与改进后y乙的函数解析式即可得出答案【详解】(1)由图得,总工作量为370件,由图可得出乙完成了220件,故甲5时完成的工作量是1(2)设y甲的函数解析式为y=kt(k0),把点(5,1)代入可得:k=30故y甲=30t(0t5);乙改进前,甲乙每小时完成50件,所以乙每小时完成20件,当0t2时,可得y乙=20t;当2t5时,设y=ct+d,将点(2,40),(5,220)代入可得:,解得:,故y乙=60t80(2t5)综上可得:y甲=30t(0t5);y乙=(3)由题意得:,解得:t=,故改进后2=小时后乙与甲完成的工作量相等【点睛】本题考查
30、了一次函数的应用,解题的关键是能读懂函数图象所表示的信息,另外要熟练掌握待定系数法求函数解析式的知识.27、(1)平均每次降价率为30%,才能使这件A商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为1元【解析】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据总利润每件的利润销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论【详解】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据题意得:80(1x)239.2,解得:x10.330%,x21.7(不合题意,舍去)答:平均每次降价率为30%,才能使这件A商品的售价为39.2元(2)根据题意得:0.580(1+a%)3010(1+2a%)30000,整理得:a2+75a25000,解得:a125,a21(不合题意,舍去),80(1+a%)80(1+25%)1答:乙网店在“双十一”购物活动这天的网上标价为1元【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键