《福建省泉州市永春第二中学2023届中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《福建省泉州市永春第二中学2023届中考数学押题试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1古希腊著名的毕达哥拉斯学派把1,3,6,10这样的数称为“三角形数”,而把1,4,9,16这样的数称为“正方形数”从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和下列等式中,符合这一规律的是()A133+10B259+16C3615+21D4918+312的相反数是AB
2、2CD3加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系pat2+bt+c(a,b,c是常数),如图记录了三次实验的数据根据上述函数模型和实验数据,可得到最佳加工时间为()A4.25分钟B4.00分钟C3.75分钟D3.50分钟4下列4个点,不在反比例函数图象上的是( )A( 2,3)B(3,2)C(3,2)D( 3,2)5如图,圆O是等边三角形内切圆,则BOC的度数是()A60B100C110D1206下列计算中正确的是()Ax2+x2=x4Bx6x3=x2C(x3)2=x6Dx-1=x7二次函数(a、b、c是
3、常数,且a0)的图象如图所示,下列结论错误的是( )A4acb2Babc0Cb+c3aDab8某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了()A25本B20本C15本D10本9如图,在ABC中,C=90,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,MPQ的面积大小变化情况是( )A一直增大B一直减小C先减小后增大D先增大后减小10下列各组单项式中,不是同类项
4、的一组是( )A和B和C和D和3二、填空题(本大题共6个小题,每小题3分,共18分)11孙子算经中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为_12如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_.13已知点A(x1,y1),B(x2,y2)在直线ykxb上,且直线经过第一、三、四象限,当x1x2时,y1与y2的大小关系为_14不等式组的解集为_15掷一枚材质均匀的骰子,掷得的点数为合数的概率是_ .16方程的根为_三、解答题
5、(共8题,共72分)17(8分)如图所示,在ABCD中,E是CD延长线上的一点,BE与AD交于点F,DECD.(1)求证:ABFCEB;(2)若DEF的面积为2,求ABCD的面积18(8分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵经过统计,在整个过程中,每棵树苗的种植成本如图所示设种植A种树苗的工人为x名,种植B种树苗的工人为y名求y与x之间的函数关系式;设种植的总成本为w元,求w与x之间的函数关系式;若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树
6、苗工人的概率19(8分)如图,已知点A(2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标20(8分)如图,RtABC中,ABC90,点D,F分别是AC,AB的中点,CEDB,BEDC(1)求证:四边形DBEC是菱形;(2)若AD3, DF1,求四边形DBEC面积21(8分)如图,AB是的直径,AF是切线,CD是垂直于AB的弦,垂足为点E,过点C作DA的平行线与AF
7、相交于点F,已知,求AD的长;求证:FC是的切线22(10分)如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30,底端B的俯角为10,请你根据以上数据,求出楼AB的高度(精确到0.1米)(参考数据:sin100.17, cos100.98, tan100.18, 1.41, 1.73)23(12分)如图,一次函数ykxb的图象与反比例函数y的图象交于点A(3,m8),B(n,6)两点(1)求一次函数与反比例函数的解析式;(2)求AOB的面积24如图,已知ABCD作B的平分线交AD于E点。(用尺规作图法,保留作图痕
8、迹,不要求写作法);若ABCD的周长为10,CD=2,求DE的长。参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】本题考查探究、归纳的数学思想方法题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值【详解】A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和故选:C【点睛】此题是一道找规律的题目,这类题型在中考中经常出现对于找规律的题目首先
9、应找出哪些部分发生了变化,是按照什么规律变化的2、B【解析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以2的相反数是2,故选B【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .3、C【解析】根据题目数据求出函数解析式,根据二次函数的性质可得【详解】根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:解得:a=0.2,b=1.5,c=2,即p=0.2t2+1.5t2,当t=3.75时,p取得最大值,故选C.【点睛】本题考查了二次函数的应用,熟练掌握性质是解题的关键.4、D【解析】分析:根据得k=xy=-6,所以只要点的横坐标与纵坐标的积等于
10、-6,就在函数图象上解答:解:原式可化为:xy=-6,A、2(-3)=-6,符合条件;B、(-3)2=-6,符合条件;C、3(-2)=-6,符合条件;D、32=6,不符合条件故选D5、D【解析】由三角形内切定义可知OB、OC是ABC、ACB的角平分线,所以可得到关系式OBC+OCB=(ABC+ACB),把对应数值代入即可求得BOC的值【详解】解:ABC是等边三角形,A=ABC=ACB=60,圆O是等边三角形内切圆,OB、OC是ABC、ACB的角平分线,OBC+OCB=(ABC+ACB)=(18060)=60,BOC=18060=120,故选D【点睛】此题主要考查了三角形的内切圆与内心以及切线的
11、性质关键是要知道关系式OBC+OCB=(ABC+ACB)6、C【解析】根据合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义逐项求解,利用排除法即可得到答案.【详解】A. x2+x2=2x2 ,故不正确; B. x6x3=x3 ,故不正确; C. (x3)2=x6 ,故正确; D. x1=,故不正确;故选C.【点睛】本题考查了合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义,解答本题的关键是熟练掌握各知识点.7、D【解析】根据二次函数的图象与性质逐一判断即可求出答案【详解】由图象可知:0,b24ac0,b24ac,故A正确;抛物线开口向上,a0,抛物线与y轴的
12、负半轴,c0,抛物线对称轴为x=0,b0,abc0,故B正确;当x=1时,y=a+b+c0,4a0,a+b+c4a,b+c3a,故C正确;当x=1时,y=ab+c0,ab+cc,ab0,ab,故D错误;故选D考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用8、C【解析】设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40x)本,乙种笔记本的单价是(y+3)元,根据题意列出关于x、y的二元一次方程组,求出x、y的值即可【详解】解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本
13、买了(40x)本,乙种笔记本的单价是(y+3)元,根据题意,得:,解得:,答:甲种笔记本买了25本,乙种笔记本买了15本故选C【点睛】本题考查的是二元二次方程组的应用,能根据题意得出关于x、y的二元二次方程组是解答此题的关键9、C【解析】如图所示,连接CM,M是AB的中点,SACM=SBCM=SABC,开始时,SMPQ=SACM=SABC;由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,SMPQ=SABC;结束时,SMPQ=SBCM=SABCMPQ的面积大小变化情况是:先减小后增大故选C10、A【解析】如果两个单项式,它们所含的字母相同,并且相同字
14、母的指数也分别相同,那么就称这两个单项式为同类项【详解】根据题意可知:x2y和2xy2不是同类项.故答案选:A.【点睛】本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】分析:根据题意可以列出相应的方程组,从而可以解答本题详解:由题意可得,故答案为点睛:本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组12、【解析】试题解析:两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,P(飞镖落在白色区域)=.13、y1y1【解析】直接
15、利用一次函数的性质分析得出答案【详解】解:直线经过第一、三、四象限,y随x的增大而增大,x1x1,y1与y1的大小关系为:y1y1故答案为:y1y1【点睛】此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键14、2x【解析】根据解不等式的步骤从而得到答案.【详解】,解不等式可得:x2,解不等式可得:x,故答案为2x.【点睛】本题主要考查了解不等式,解本题的要点在于分别求解,不等式,从而得到答案.15、【解析】分析:根据概率的求法,找准两点: 全部情况的总数; 符合条件的情况数目;二者的比值就是其发生的概率详解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、5、6
16、中的任意一个数,共有六种可能,其中4、6是合数,所以概率为= 故答案为点睛:本题主要考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比16、2或7【解析】把无理方程转化为整式方程即可解决问题【详解】两边平方得到:13+2=25,=6,(x+11)(2-x)=36,解得x=-2或-7,经检验x=-2或-7都是原方程的解故答案为-2或-7【点睛】本题考查无理方程,解题的关键是学会把无理方程转化为整式方程三、解答题(共8题,共72分)17、(1)见解析;(2)16【解析】试题分析:(1)要证ABFCEB,需找出两组对应角相等;已知了平行四边形的对角相等,再利用ABCD,可得一对内错角相等
17、,则可证(2)由于DEFEBC,可根据两三角形的相似比,求出EBC的面积,也就求出了四边形BCDF的面积同理可根据DEFAFB,求出AFB的面积由此可求出ABCD的面积试题解析:(1)证明:四边形ABCD是平行四边形A=C,ABCDABF=CEBABFCEB(2)解:四边形ABCD是平行四边形ADBC,AB平行且等于CDDEFCEB,DEFABFDE=CD,SDEF=2SCEB=18,SABF=8,S四边形BCDF=SBCE-SDEF=16S四边形ABCD=S四边形BCDF+SABF=16+8=1考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质18、(1);(2);【解
18、析】(1)先求出种植C种树苗的人数,根据现种植A、B、C三种树苗一共480棵,可以列出等量关系,解出y与x之间的关系;(2)分别求出种植A,B,C三种树苗的成本,然后相加即可;求出种植C种树苗工人的人数,然后用种植C种树苗工人的人数总人数即可求出概率【详解】解:(1)设种植A种树苗的工人为x名,种植B种树苗的工人为y名,则种植C种树苗的人数为(80-x-y)人,根据题意,得:8x+6y+5(80-x-y)=480,整理,得:y=-3x+80;(2)w=158x+126y+85(80-x-y)=80x+32y+3200,把y=-3x+80代入,得:w=-16x+5760,种植的总成本为5600元
19、时,w=-16x+5760=5600,解得x=10,y=-310+80=50,即种植A种树苗的工人为10名,种植B种树苗的工人为50名,种植B种树苗的工人为:80-10-50=20名采访到种植C种树苗工人的概率为:=【点睛】本题主要考查了一次函数的实际问题,以及概率的求法,能够将实际问题转化成数学模型是解答此题的关键19、(1)y=x2+x+3;D(1,);(2)P(3,)【解析】(1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;(2)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-m2+m
20、+3),则F(m,-m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF列方程可得m的值,从而得P的坐标【详解】解:(1)设抛物线的解析式为y=a(x+2)(x4),将点C(0,3)代入得:8a=3,解得:a=,y=x2+x+3=(x1)2+,抛物线的解析式为y=x2+x+3,且顶点D(1,);(2)B(4,0),C(0,3),BC的解析式为:y=x+3,D(1,),当x=1时,y=+3=,E(1,),DE=-=,设P(m,m2+m+3),则F(m,m+3),四边形DEFP是平行四边形,且DEFP,DE=FP,即(m2+m+3)(m+3)=,解得:m1=1(舍),m2=3,P(
21、3,)【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中20、 (1)见解析;(1)4 【解析】(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;(1)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答【详解】(1)证明:CEDB,BEDC,四边形DBEC为平行四边形又RtABC中,ABC=90,点D是AC的中点,CD=BD=AC,平行四边形DBEC是菱形;(1)点D,F分别
22、是AC,AB的中点,AD=3,DF=1,DF是ABC的中位线,AC=1AD=6,SBCD=SABCBC=1DF=1又ABC=90,AB= = = 4平行四边形DBEC是菱形,S四边形DBEC=1SBCD=SABC=ABBC=41=4点睛:本题考查了菱形的判定与性质,直角三角形斜边上的中线等于斜边的一半,三角形中位线定理.由点D是AC的中点,得到CD=BD是解答(1)的关键,由菱形的性质和三角形的面积公式得到S四边形DBEC=SABC是解(1)的关键.21、(1);(2)证明见解析.【解析】(1)首先连接OD,由垂径定理,可求得DE的长,又由勾股定理,可求得半径OD的长,然后由勾股定理求得AD的
23、长;(2)连接OF、OC,先证明四边形AFCD是菱形,易证得AFOCFO,继而可证得FC是O的切线【详解】证明:连接OD,是的直径,设,在中,解得:,在中,;连接OF、OC,是切线,四边形FADC是平行四边形,平行四边形FADC是菱形,即,即,点C在上,是的切线【点睛】此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用22、30.3米【解析】试题分析:过点D作DEAB于点E,在RtADE中,求出AE的长,在RtDEB中,求出BE的长即可得.试题解析:过点D作DEAB于点E,在RtADE中,AED=90,tan1=, 1=3
24、0,AE=DE tan1=40tan30=40401.7323.1 在RtDEB中,DEB=90,tan2=, 2=10,BE=DE tan2=40tan10400.18=7.2 AB=AE+BE23.1+7.2=30.3米23、(1)y=-,y=-2x-4(2)1【解析】(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据SAOB=SAOC+SBOC列式计算即可得解【详解】(
25、1)将A(3,m+1)代入反比例函数y=得,=m+1,解得m=6,m+1=6+1=2,所以,点A的坐标为(3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x4;(2)设AB与x轴相交于点C,令2x4=0解得x=2,所以,点C的坐标为(2,0),所以,OC=2,SAOB=SAOC+SBOC,=22+26,=2+6,=1考点:反比例函数与一次函数的交点问题24、(1)作图见解析;(2)1【解析】(1)以点B为圆心,任意长为半径画弧分别与AB、BC相交。然后再分别以交点为圆心,以交点间的距离为半径分别画弧,两弧相交于一点,画出射线BE即得.(2)根据平行四边形的对边相等,可得AB+AD=5,由两直线平行内错角相等可得AEB=EBC,利用角平分线即得ABE=EBC,即证 AEB=ABE .根据等角对等边可得AB=AE=2,从而求出ED的长.【详解】(1)解:如图所示:(2)解:平行四边形ABCD的周长为10AB+AD=5AD/BCAEB=EBC又BE平分ABCABE=EBCAEB=ABEAB=AE=2ED=AD-AE=3-2=1【点睛】此题考查作图-基本作图和平行四边形的性质,解题关键在于掌握作图法则