《福建省厦门六中学2023届中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《福建省厦门六中学2023届中考数学押题试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列运算结果为正数的是( )A1+(2)B1(2)C1(2)D1(2)2如图,在ABCD中,用直尺和圆规作BAD的平分线AG交BC于点E若BF=8,AB=5,则AE的长为( )A5B6C8D123如图所示,在长方形纸片ABCD中,A
2、B=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A16cmB20cmC24cmD28cm4如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a0)经过ABC区域(包括边界),则a的取值范围是()A或B或C或D5如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A甲B乙C丙D丁6某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名
3、学生所得分数的平均数和众数分别是( )人数3421分数80859095A85和82.5B85.5和85C85和85D85.5和807通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )A10.7104B1.07105C1.7104D1.071048如图所示:有理数在数轴上的对应点,则下列式子中错误的是( )ABCD9某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花如果有ABEFDC,BCGHAD,那么下列说法错误的是()A红花、绿花种植面积一定相等B紫花、橙花种植面积一定相等C红花、蓝花种植面积一定
4、相等D蓝花、黄花种植面积一定相等10二次函数y=-x2-4x+5的最大值是( )A-7B5C0D9二、填空题(共7小题,每小题3分,满分21分)11如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D当ODAD3时,这两个二次函数的最大值之和等于_12若2x+y=2,则4x+1+2y的值是_13二次函数的图象如图,若一元二次方程有实数根,则 的最大值为_14如果分式的值是0,那么x的值是_.15如图,在两个同心圆中,四条直径把大圆分成八等份,若往
5、圆面投掷飞镖,则飞镖落在黑色区域的概率是_.16请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分A如图,在平面直角坐标系中,点的坐标为,沿轴向右平移后得到,点的对应点是直线上一点,则点与其对应点间的距离为_B比较_的大小17如图,线段 AB 是O 的直径,弦 CDAB,AB=8,CAB=22.5,则 CD的长等于_三、解答题(共7小题,满分69分)18(10分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:摸球总次数102
6、0306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是_;如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?19(5分)某中学为了解八年级学习体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2
7、)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名20(8分)某校计划购买篮球、排球共20个购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案21(10分)(1)计算:;(2)先化简,再求值:,其中a=22(10分)阅读材料,解答问题材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P1(3,9)开始,按点的横坐标依次增加1的规律,在抛
8、物线yx2上向右跳动,得到点P2、P3、P4、P5(如图1所示)过P1、P2、P3分别作P1H1、P2H2、P3H3垂直于x轴,垂足为H1、H2、H3,则SP1P2P3S梯形P1H1H3P3S梯形P1H1H2P2S梯形P2H2H3P3(9+1)2(9+4)1(4+1)1,即P1P2P3的面积为1”问题:(1)求四边形P1P2P3P4和P2P3P4P5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);(2)猜想四边形Pn1PnPn+1Pn+2的面积,并说明理由(利用图2);(3)若将抛物线yx2改为抛物线yx2+bx+c,其它条件不变,猜想四边形Pn1PnPn+1Pn+2的面
9、积(直接写出答案)23(12分)计算:21+|+2cos3024(14分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率从概率的角度分析,你建议小明在第几题使用“求助”(直接写出答案)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】分别根据有理数的加、减、乘、除运算法则
10、计算可得【详解】解:A、1+(2)(21)1,结果为负数;B、1(2)1+23,结果为正数;C、1(2)122,结果为负数;D、1(2)12,结果为负数;故选B【点睛】本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键2、B【解析】试题分析:由基本作图得到AB=AF,AG平分BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AEBF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1故选B考点:1、作图基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质3、C【解析】首先根据平行线的性质以及折叠的性质证明EAC=DCA,根据等角对等边证明
11、FC=AF,则DF即可求得,然后在直角ADF中利用勾股定理求解【详解】长方形ABCD中,ABCD,BAC=DCA,又BAC=EAC,EAC=DCA,FC=AF=25cm,又长方形ABCD中,DC=AB=32cm,DF=DC-FC=32-25=7cm,在直角ADF中,AD=24(cm)故选C【点睛】本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键4、B【解析】试题解析:如图所示:分两种情况进行讨论:当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过ABC区域(包括边界),的取值范围是: 当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过ABC
12、区域(包括边界),的取值范围是: 故选B.点睛:二次函数 二次项系数决定了抛物线开口的方向和开口的大小,开口向上,开口向下.的绝对值越大,开口越小.5、A【解析】首先比较平均数,平均数相同时选择方差较小的运动员参加【详解】=,从甲和丙中选择一人参加比赛,=,选择甲参赛,故选A【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.6、B【解析】根据众数及平均数的定义,即可得出答案.【详解】解:这组数据中85出现的次数最多,故众数是85;平均数= (803+854+902+951)=85.5.故选:B.【点睛】本题考查了众数及平均数的知识,掌握各部分的
13、概念是解题关键.7、D【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:10700=1.07104,故选:D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值8、C【解析】从数轴上可以看出a、b都是负数,且ab,由此逐项分析得出结论即可【详解】由数轴可知:ab0,A、两数相乘,同号得正,ab0是正确的;B、同号相加,取相同的符号,a+
14、b0是正确的;C、ab0,故选项是错误的;D、a-b=a+(-b)取a的符号,a-b0是正确的故选:C【点睛】此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答.9、C【解析】图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大故选择C.【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题
15、关键.10、D【解析】直接利用配方法得出二次函数的顶点式进而得出答案【详解】y=x24x+5=(x+2)2+9,即二次函数y=x24x+5的最大值是9,故选D【点睛】此题主要考查了二次函数的最值,正确配方是解题关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题【详解】过B作BFOA于F,过D作DEOA于E,过C作CMOA于M,则BF+CM是这两个二次函数的最大值之和,BFDECM,求出AE=OE=2,DE= ,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出
16、OBFODE,ACMADE,得出= ,代入求出BF和CM,相加即可求出答案过B作BFOA于F,过D作DEOA于E,过C作CMOA于M,BFOA,DEOA,CMOA,BFDECMOD=AD=3,DEOA,OE=EA= OA=2,由勾股定理得:DE= =5,设P(2x,0),根据二次函数的对称性得出OF=PF=x,BFDECM,OBFODE,ACMADE,AM=PM= (OA-OP)= (4-2x)=2-x,即,解得:BF+CM= 故答案为【点睛】考核知识点:二次函数综合题熟记性质,数形结合是关键.12、1【解析】分析:将原式化简成2(2x+y)+1,然后利用整体代入的思想进行求解得出答案详解:原
17、式=2(2x+y)+1=22+1=1点睛:本题主要考查的是整体思想求解,属于基础题型找到整体是解题的关键13、3【解析】试题解析:抛物线的开口向上,顶点纵坐标为-3,a1-=-3,即b2=12a,一元二次方程ax2+bx+m=1有实数根,=b2-4am1,即12a-4am1,即12-4m1,解得m3,m的最大值为3,14、1【解析】根据分式为1的条件得到方程,解方程得到答案【详解】由题意得,x1,故答案是:1【点睛】本题考查分式的值为零的条件,分式为1需同时具备两个条件:(1)分子为1;(2)分母不为1这两个条件缺一不可15、【解析】试题解析:两个同心圆被等分成八等份,飞镖落在每一个区域的机会
18、是均等的,其中白色区域的面积占了其中的四等份,P(飞镖落在白色区域)=.16、5 【解析】A:根据平移的性质得到OAOA,OOBB,根据点A在直线求出A的横坐标,进而求出OO的长度,最后得到BB的长度;B:根据任意角的正弦值等于它余角的余弦值将sin53化为cos37,再进行比较.【详解】A:由平移的性质可知,OAOA4,OOBB.因为点A在直线上,将y4代入,得到x5.所以OO5,又因为OOBB,所以点B与其对应点B间的距离为5.故答案为5.B:sin53cos(9053)cos37,tan37 ,根据正切函数与余弦函数图像可知,tan37tan30,cos37cos45,即tan37 ,c
19、os37 ,又,tan37cos37,即sin53tan37.故答案是.【点睛】本题主要考查图形的平移、一次函数的解析式和三角函数的图像,熟练掌握这些知识并灵活运用是解答的关键.17、4 【解析】连接 OC,如图所示,由直径 AB 垂直于 CD,利用垂径定理得到 E 为CD 的中点,即 CE=DE,由 OA=OC,利用等边对等角得到一对角相等,确定出三角形 COE 为等腰直角三角形,求出 CE 的长,进而得出 CD【详解】连接 OC,如图所示:AB 是O 的直径,弦 CDAB,OC= AB=4,OA=OC,A=OCA=22.5,COE 为AOC 的外角,COE=45,COE 为等腰直角三角形,
20、CE= OC=,CD=2CE=,故答案为.【点睛】考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键三、解答题(共7小题,满分69分)18、(1)出现“和为8”的概率是0.33;(2)x的值不能为7.【解析】(1)利用频率估计概率结合表格中数据得出答案即可;(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与进行比较,即可得出答案.【详解】解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,故出现“和为8”的概率是0.33.(2)x的值不能为7.理由:假设x7,则P(和为9),所以x的值不能为7.【点睛】此题主要考查了利用频率估计
21、概率以及树状图法求概率,正确画出树状图是解题关键.19、(1)50名;(2)16名;见解析;(3)56名【解析】试题分析:根据A等级的人数和百分比求出总人数;根据总人数和A、B、D三个等级的人数求出C等级的人数;利用总人数乘以D等级人数的百分比得出答案试题解析:(1)1020%=50(名)答:本次抽样共抽取了50名学生(2)5010204=16(名)答:测试结果为C等级的学生有16名补全图形如图所示:(3)700(450)=56(名)答:估计该中学八年级700名学生中体能测试为D等级的学生有56名考点:统计图20、(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:购买篮球8个
22、,排球12个;购买篮球9,排球11个;购买篮球2个,排球2个;方案最省钱【解析】试题分析:(1)设篮球每个x元,排球每个y元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解试题解析:解:(1)设篮球每个x元,排球每个y元,依题意,得:解得答:篮球每个50元,排球每个30元(2)设购买篮球m个,则购买排球(20-m)个,依题意,得:50m+30(20-m)1解得:m2又m8,8m2篮球的个数必须为整数,只能取8、9、2满足题意的
23、方案有三种:购买篮球8个,排球12个,费用为760元;购买篮球9,排球11个,费用为780元;购买篮球2个,排球2个,费用为1元以上三个方案中,方案最省钱点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键21、(1)2016;(2)a(a2),【解析】试题分析:(1)分别根据0指数幂及负整数指数幂的计算法则、特殊角的三角函数值、绝对值的性质及数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)先算括号里面的,再算除法,最后把a的值代入进行计算即可试题解析:(1)原式=2016;(2)原式=a(a2),当a=时,原式=22、 (1)2
24、,2;(2)2,理由见解析;(3)2【解析】(1)作P5H5垂直于x轴,垂足为H5,把四边形P1P2P3P2和四边形P2P3P2P5的转化为SP1P2P3P2SOP1H1SOP3H3S梯形P2H2H3P3S梯形P1H1H2P2和SP2P3P2P5S梯形P5H5H2P2SP5H5OSOH3P3S梯形P2H2H3P3来求解;(2)(3)由图可知,Pn1、Pn、Pn+1、Pn+2的横坐标为n5,n2,n3,n2,代入二次函数解析式,可得Pn1、Pn、Pn+1、Pn+2的纵坐标为(n5)2,(n2)2,(n3)2,(n2)2,将四边形面积转化为S四边形Pn1PnPn+1Pn+2S梯形Pn5Hn5Hn2
25、Pn2S梯形Pn5Hn5Hn2Pn2S梯形Pn2Hn2Hn3Pn3S梯形Pn3Hn3Hn2Pn2来解答【详解】(1)作P5H5垂直于x轴,垂足为H5,由图可知SP1P2P3P2SOP1H1SOP3H3S梯形P2H2H3P3S梯形P1H1H2P22,SP2P3P2P5S梯形P5H5H2P2SP5H5OSOH3P3S梯形P2H2H3P32;(2)作Pn1Hn1、PnHn、Pn+1Hn+1、Pn+2Hn+2垂直于x轴,垂足为Hn1、Hn、Hn+1、Hn+2,由图可知Pn1、Pn、Pn+1、Pn+2的横坐标为n5,n2,n3,n2,代入二次函数解析式,可得Pn1、Pn、Pn+1、Pn+2的纵坐标为(n
26、5)2,(n2)2,(n3)2,(n2)2,四边形Pn1PnPn+1Pn+2的面积为S四边形Pn1PnPn+1Pn+2S梯形Pn5Hn5Hn2Pn2S梯形Pn5Hn5Hn2Pn2S梯形Pn2Hn2Hn3Pn3S梯形Pn3Hn3Hn2Pn22;(3)S四边形Pn1PnPn+1Pn+2S梯形Pn5Hn5Hn2Pn2S梯形Pn5Hn5Hn2Pn2S梯形Pn2Hn2Hn3Pn3S梯形Pn3Hn3Hn2Pn2=-2【点睛】本题是一道二次函数的综合题,考查了根据函数坐标特点求图形面积的知识,解答时要注意,前一小题为后面的题提供思路,由于计算量极大,要仔细计算,以免出错,23、+4【解析】原式利用负整数指数
27、幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值【详解】原式+2+2+4【点睛】本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键24、(1);(2);(3)第一题.【解析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案【详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为;(3)建议小明在第一题使用“求助”理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=,因为,所以建议小明在第一题使用“求助”【点睛】本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.