《湖北省恩施州巴东县2023届中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《湖北省恩施州巴东县2023届中考数学最后冲刺模拟试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在RtABC中,C=90,CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为()
2、A1B2C3D42如图,已知ABC的三个顶点均在格点上,则cosA的值为( )ABCD3三角形的两边长分别为3和6,第三边的长是方程x26x+80的一个根,则这个三角形的周长是()A9B11C13D11或134两个同心圆中大圆的弦AB与小圆相切于点C,AB=8,则形成的圆环的面积是( )A无法求出B8C8D165如图,已知ABC,ABAC,将ABC沿边BC翻转,得到的DBC与原ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )A四条边相等的四边形是菱形B一组邻边相等的平行四边形是菱形C对角线互相垂直的平行四边形是菱形D对角线互相垂直平分的四边形是菱形6数据4,8,4,6,
3、3的众数和平均数分别是( )A5,4B8,5C6,5D4,57下列四个多项式,能因式分解的是()Aa1Ba21Cx24yDx26x98的值等于( )ABCD9如图,在O中,弦BC1,点A是圆上一点,且BAC30,则的长是( )ABCD10如图,EF过ABCD对角线的交点O,交AD于E,交BC于F,若ABCD的周长为18,则四边形EFCD的周长为A14B13C12D1011在,0,1这四个数中,最小的数是ABC0D112下列图形中,可以看作是中心对称图形的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13将两块全等的含30角的三角尺如图1摆放在一起,设较短直角边为1,如图
4、2,将RtBCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为 时,四边ABC1D1为矩形;当点B的移动距离为 时,四边形ABC1D1为菱形14甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是_km/h15如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数y=(x0)的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k= 16某同学对甲、乙、
5、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是_17如图所示,一动点从半径为2的O上的A0点出发,沿着射线A0O方向运动到O上的点A1处,再向左沿着与射线A1O夹角为60的方向运动到O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到O上的点A3处,再向左沿着与射线A3O夹角为60的方向运动到O上的点A4处;A4A0间的距离是_;按此规律运动到点A2019处,则点A2019与点A0间的距离是_18若点M(k1,k+1)关于y轴的对称点在第四象限
6、内,则一次函数y=(k1)x+k的图象不经过第 象限三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名)1323241每人月工资(元)2100084002025220018001600950请你根据上述内容,解答下列问题:该公司“高级技工”有 名;所有员工月工资的平均数x为2500元,中位数为 元,众数为 元;小张到这家公司应聘普通工作人员请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张
7、介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平20(6分)如图,在方格纸中.(1)请在方格纸上建立平面直角坐标系,使,并求出点坐标;(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;(3)计算的面积.21(6分)如图,在RtABC中,C90,以BC为直径的O交AB于点D,过点D作O的切线DE交AC于点E(1)求证:AADE;(2)若AB25,DE10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S(用含字母a的式子表示)22(8分)如图所示,直线y=2x+b与反
8、比例函数y=交于点A、B,与x轴交于点C(1)若A(3,m)、B(1,n)直接写出不等式2x+b的解(2)求sinOCB的值(3)若CBCA=5,求直线AB的解析式23(8分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?24(10分) “六一”期间,小张购述100只两种型号的文具进行销售,其中A种型号的文具进价为10元/只,售价为12元,B种型号的文具进价为15元1只,售价为23元/只(1)小张如何进货,使进货款恰好为1300元?(2)如果购进A型文具的数量不少
9、于B型文具数量的倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?25(10分)(1)2018+()126(12分)如图,在ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。求证:D是BC的中点;如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。27(12分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18,教学楼底部B的俯角为20,量得实验楼与教学楼之间的距离AB=30m(1)求BCD的度数(2)求教学楼的高BD(结果精确到0.1
10、m,参考数据:tan200.36,tan180.32)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】试题分析:由角平分线和线段垂直平分线的性质可求得B=CAD=DAB=30,DE垂直平分AB,DA=DB,B=DAB,AD平分CAB,CAD=DAB, C=90,3CAD=90,CAD=30, AD平分CAB,DEAB,CDAC, CD=DE=BD, BC=3, CD=DE=1考点:线段垂直平分线的性质2、D【解析】过B点作BDAC,如图,由勾股定理得,AB=,AD=,cosA=,故选D3、C【解析】试题分析:先求出方
11、程x26x80的解,再根据三角形的三边关系求解即可.解方程x26x80得x=2或x=4当x=2时,三边长为2、3、6,而2+36,此时无法构成三角形当x=4时,三边长为4、3、6,此时可以构成三角形,周长=4+3+6=13故选C.考点:解一元二次方程,三角形的三边关系点评:解题的关键是熟记三角形的三边关系:任两边之和大于第三边,任两边之差小于第三边.4、D【解析】试题分析:设AB于小圆切于点C,连接OC,OBAB于小圆切于点C,OCAB,BC=AC=AB=8=4cm圆环(阴影)的面积=OB2-OC2=(OB2-OC2)又直角OBC中,OB2=OC2+BC2圆环(阴影)的面积=OB2-OC2=(
12、OB2-OC2)=BC2=16故选D考点:1垂径定理的应用;2切线的性质5、A【解析】根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可【详解】将ABC延底边BC翻折得到DBC,AB=BD,AC=CD,AB=AC,AB=BD=CD=AC,四边形ABDC是菱形;故选A.【点睛】本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.6、D【解析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可【详解】4出现了2次,出现的次数最多,众数是4;这组数据的平均数是:(4+8+4+
13、6+3)5=5;故选D7、D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可试题解析:x2-6x+9=(x-3)2故选D考点:2因式分解-运用公式法;2因式分解-提公因式法8、C【解析】试题解析:根据特殊角的三角函数值,可知: 故选C.9、B【解析】连接OB,OC首先证明OBC是等边三角形,再利用弧长公式计算即可【详解】解:连接OB,OCBOC2BAC60,OBOC,OBC是等边三角形,OBOCBC1,的长,故选B【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型10、C【解析】平行四边形ABCD,ADBC,AD=BC,AO=C
14、O,EAO=FCO,在AEO和CFO中,AEOCFO,AE=CF,EO=FO=1.5,C四边形ABCD=18,CD+AD=9,C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【点睛】本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.11、A【解析】【分析】根据正数大于零,零大于负数,正数大于一切负数,即可得答案【详解】由正数大于零,零大于负数,得,最小的数是,故选A【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”是解题关键12、A【解析】分析:根据中心对称的定义,结合所给图
15、形即可作出判断详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180后能够重合二、填空题:(本大题共6个小题,每小题4分,共24分)13、,【解析】试题分析:当点B的移动距离为时,C1BB1=60,则ABC1=90,根据有一直角的平行四边形是矩形,可判定四边形ABC1D1为矩形;当点B的移动距离为时,D、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC1D1为菱形试题解析:如图:当四边形AB
16、C1D是矩形时,B1BC1=9030=60,B1C1=1,BB1=,当点B的移动距离为时,四边形ABC1D1为矩形;当四边形ABC1D是菱形时,ABD1=C1BD1=30,B1C1=1,BB1=,当点B的移动距离为时,四边形ABC1D1为菱形考点:1菱形的判定;2矩形的判定;3平移的性质14、3.6【解析】分析:根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题详解:由题意,甲速度为6km/h当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇设乙的速度为xkm/h4.56+2.5x=36解得x=3.6故答案为3.6点睛:本题为一次函数实际应
17、用问题,考查一次函数图象在实际背景下所代表的意义解答这类问题时,也可以通过构造方程解决问题15、1【解析】先根据反比例函数比例系数k的几何意义得到,再根据相似三角形的面积比等于相似比的平方,得到用含k的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为,列出方程,解方程即可求出k的值【详解】解:根据题意可知,轴,设图中阴影部分的面积从左向右依次为,则,解得:k=2故答案为1考点:反比例函数综合题16、乙【解析】据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,即可得出答案【详解】解:S甲2
18、=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,S乙2S丁2S甲2S丙2,二月份白菜价格最稳定的市场是乙;故答案为:乙【点睛】本题考查方差的意义解题关键是掌握方差的意义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定17、 1 【解析】据题意求得A0A14,A0A1,A0A31,A0A4,A0A51,A0A60,A0A74,于是得到A1019与A3重合,即可得到结论【详解】解:如图,O的半径1,由题意得,A0A14,A0A1,A0A31,A0A
19、4,A0A51,A0A60,A0A74,101963363,按此规律A1019与A3重合,A0A1019A0A31,故答案为,1.【点睛】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键18、一【解析】试题分析:首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案点M(k1,k+1)关于y轴的对称点在第四象限内, 点M(k1,k+1)位于第三象限,k10且k+10, 解得:k1,y=(k1)x+k经过第二、三、四象限,不经过第一象限考点:一次函数的性质三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤1
20、9、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些(4)能反映该公司员工的月工资实际水平【解析】(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】(1)该公司“高级技工”的人数=501323241=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出
21、现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平用1700元或1600元来介绍更合理些(4)(元)能反映该公司员工的月工资实际水平20、(1)作图见解析;.(2)作图见解析;(3)1.【解析】分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出ABC;(3)直接利用(2)中图形求出三角形面积即可详解:(1)如图所示,即为所求的直角坐标系;B(2,1);(2)如图:ABC即为所求;(3)SABC=48=1点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键画位似图形的一般步骤为:确定位似中心
22、;分别连接并延长位似中心和关键点;根据位似比,确定位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形21、(1)见解析;(2)75a.【解析】(1)连接CD,求出ADC=90,根据切线长定理求出DE=EC,即可求出答案;(2)连接CD、OD、OE,求出扇形DOC的面积,分别求出ODE和OCE的面积,即可求出答案【详解】(1)证明:连接DC,BC是O直径,BDC=90,ADC=90,C=90,BC为直径,AC切O于C,过点D作O的切线DE交AC于点E,DE=CE,EDC=ECD,ACB=ADC=90,A+ACD=90,ADE+EDC=90,A=ADE;(2)解:连接CD、OD、OE,DE=
23、10,DE=CE,CE=10,A=ADE,AE=DE=10,AC=20,ACB=90,AB=25,由勾股定理得:BC=15,CO=OD=,的长度是a,扇形DOC的面积是a=a,DE、EC和弧DC围成的部分的面积S=10+10a=75a【点睛】本题考查了圆周角定理,切线的性质,切线长定理,等腰三角形的性质和判定,勾股定理,扇形的面积,三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键22、(1) x3或0x1;(2);(3)y=2x2【解析】(1)不等式的解即为函数y=2x+b的图象在函数y=上方的x的取值范围可由图象直接得到(2)用b表示出OC和OF的长度,求出CF的长,进而求
24、出sinOCB(3)求直线AB的解析式关键是求出b的值【详解】解:(1)如图:由图象得:不等式2x+b的解是x3或0x1;(2)设直线AB和y轴的交点为F当y=0时,x=,即OC=;当x=0时,y=b,即OF=b,CF=,sinOCB=sinOCF=(3)过A作ADx轴,过B作BEx轴,则AC=AD=,BC=,ACBC=(yA+yB)=(xA+xB)=5,又2x+b=,所以2x2+bxk=0,b=5,b=,y=2x2【点睛】这道题主要考查反比例函数的图象与一次函数的交点问题,借助图象分析之间的关系,体现数形结合思想的重要性23、周瑜去世的年龄为16岁【解析】设周瑜逝世时的年龄的个位数字为x,则
25、十位数字为x1根据题意建立方程求出其值就可以求出其结论【详解】设周瑜逝世时的年龄的个位数字为x,则十位数字为x1由题意得;10(x1)+xx2,解得:x15,x26当x5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x6时,周瑜年龄为16岁,完全符合题意答:周瑜去世的年龄为16岁【点睛】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键24、(1)A种文具进货40只,B种文具进货60只;(2)一共有三种购货方案,购买A型文具48只,购买B型文具52只使销售文具所获利润最大【解析】(1)设可以购进A种型号的文具x只,则可以购进B
26、种型号的文具只,根据总价单价数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据题意列不等式,解之即可得出x的取值范围,再根据一次函数的性质,即可解决最值问题【详解】(1)设A种文具进货x只,B种文具进货只,由题意得:,解得:x40,答:A种文具进货40只,B种文具进货60只;(2)设购进A型文具a只,则有,且;解得:,a为整数,a48、49、50,一共有三种购货方案;利润,w随a增大而减小,当a48时W最大,即购买A型文具48只,购买B型文具52只使销售文具所获利润最大【点睛】本题主要考查了一次函数的实际问题,熟练掌握一次函数表达式的确定以及自变量取
27、值范围的确定,最值的求解方法是解决本题的关键.25、-1.【解析】直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案【详解】原式=1+13=1【点睛】本题主要考查了实数运算,正确化简各数是解题的关键26、(1)详见解析;(2)详见解析【解析】(1)根据两直线平行,内错角相等求出AFE=DCE,然后利用“角角边”证明AEF和DEC全等,再根据全等三角形的性质和等量关系即可求解;(2)由(1)知AF平行等于BD,易证四边形AFBD是平行四边形,而AB=AC,AD是中线,利用等腰三角形三线合一定理,可证ADBC,即ADB=90,那么可证四边形AFBD是矩形【详解】(1)证明:AFBC,AFE
28、=DCE,点E为AD的中点,AE=DE,在AEF和DEC中,AEFDEC(AAS),AF=CD,AF=BD,CD=BD,D是BC的中点;(2)若AB=AC,则四边形AFBD是矩形理由如下:AEFDEC,AF=CD,AF=BD,CD=BD;AFBD,AF=BD,四边形AFBD是平行四边形,AB=AC,BD=CD,ADB=90,平行四边形AFBD是矩形【点睛】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键27、(1)38;(2)20.4m【解析】(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高【详解】(1)过点C作CEBD,则有DCE=18,BCE=20,BCD=DCE+BCE=18+20=38;(2)由题意得:CE=AB=30m,在RtCBE中,BE=CEtan2010.80m,在RtCDE中,DE=CDtan189.60m,教学楼的高BD=BE+DE=10.80+9.6020.4m,则教学楼的高约为20.4m【点睛】本题考查了解直角三角形的应用仰角俯角问题,正确添加辅助线构建直角三角形、熟练掌握和灵活运用相关知识是解题的关键.