《河北省张家口桥东区五校联考2022-2023学年中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《河北省张家口桥东区五校联考2022-2023学年中考数学考试模拟冲刺卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图所示,若将ABO绕点O顺时针旋转180后得到A1B1O,则A点的对应点A1点的坐标是()A(3,2)B(3,2)C(2,3)D(2,3)2下
2、列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()Ay=(x2)2+1 By=(x+2)2+1Cy=(x2)23 Dy=(x+2)233如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()ABCD4下列条件中不能判定三角形全等的是( )A两角和其中一角的对边对应相等B三条边对应相等C两边和它们的夹角对应相等D三个角对应相等5如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且ABCGEF;弯道为以点O为圆心的一段弧,且,所对的圆心角均为90
3、甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示结合题目信息,下列说法错误的是()A甲车在立交桥上共行驶8sB从F口出比从G口出多行驶40mC甲车从F口出,乙车从G口出D立交桥总长为150m6小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( )A众数是6吨B平均数是5吨C中位数是5吨D方差是7|3|()ABC3D38如图1,在等边ABC中,D是BC的中点,P为AB 边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则ABC的面积为( ) A4B
4、C12D9下列判断错误的是( )A对角线相等的四边形是矩形B对角线相互垂直平分的四边形是菱形C对角线相互垂直且相等的平行四边形是正方形D对角线相互平分的四边形是平行四边形10如图,二次函数yax2bxc(a0)的图象经过点A,B,C现有下面四个推断:抛物线开口向下;当x=2时,y取最大值;当m ax2bxc时,x的取值范围是4x0)交于点求a,k的值;已知直线过点且平行于直线,点P(m,n)(m3)是直线上一动点,过点P分别作轴、轴的平行线,交双曲线(x0)于点、,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为横、纵坐标都是整数的点叫做整点当时,直接写出区域内的整点个数
5、;若区域内的整点个数不超过8个,结合图象,求m的取值范围20(8分)如图,在ABC中,ACB=90,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF(1)判断直线EF与O的位置关系,并说明理由;(2)若A=30,求证:DG=DA;(3)若A=30,且图中阴影部分的面积等于2,求O的半径的长21(10分)如图,BAD是由BEC在平面内绕点B旋转60而得,且ABBC,BECE,连接DE求证:BDEBCE;试判断四边形ABED的形状,并说明理由22(10分)阅读下列材料:数学课上老师布置一道作图题:已知:直线l和l外一点P求作:过点P的
6、直线m,使得ml小东的作法如下:作法:如图2,(1)在直线l上任取点A,连接PA;(2)以点A为圓心,适当长为半径作弧,分别交线段PA于点B,直线l于点C;(3)以点P为圆心,AB长为半径作弧DQ,交线段PA于点D;(4)以点D为圆心,BC长为半径作弧,交弧DQ于点E,作直线PE所以直线PE就是所求作的直线m老师说:“小东的作法是正确的”请回答:小东的作图依据是_23(12分)如图(1),P 为ABC 所在平面上一点,且APB=BPC=CPA=120,则点 P 叫做ABC 的费马点(1)如果点 P 为锐角ABC 的费马点,且ABC=60求证:ABPBCP;若 PA=3,PC=4,则 PB= (
7、2)已知锐角ABC,分别以 AB、AC 为边向外作正ABE 和正ACD,CE 和 BD相交于 P 点如图(2)求CPD 的度数;求证:P 点为ABC 的费马点24(14分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE请判断:AF与BE的数量关系是 ,位置关系 ;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断参考答案一、选择题(每小题只有一
8、个正确答案,每小题3分,满分30分)1、A【解析】由题意可知, 点A与点A1关于原点成中心对称,根据图象确定点A的坐标,即可求得点A1的坐标.【详解】由题意可知, 点A与点A1关于原点成中心对称,点A的坐标是(3,2),点A关于点O的对称点A点的坐标是(3,2)故选A【点睛】本题考查了中心对称的性质及关于原点对称点的坐标的特征,熟知中心对称的性质及关于原点对称点的坐标的特征是解决问题的关键.2、C【解析】试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项考点:二次函数的顶点式、对称轴点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析
9、式为,顶点坐标为,对称轴为3、D【解析】如图,连接AB,由圆周角定理,得C=ABO,在RtABO中,OA=3,OB=4,由勾股定理,得AB=5,故选D4、D【解析】解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;C、符合SAS,能判定三角形全等;D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;故选D5、C【解析】分析:结合2个图象分析即可.详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:,故正确.B.3段弧的长度都是:从F口出比从G口出多行驶40m,正确.C.分析图2可知甲车从G口出,乙车从F口出,故错误.D.立交桥总长为:故正确.故选C.点睛:
10、考查图象问题,观察图象,读懂图象是解题的关键.6、C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数平均数是指在一组数据中所有数据之和再除以数据的个数一般地设n个数据,x1,x2,xn的平均数为,则方差S2= (x1)2+(x2)2+(xn)2数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数7、C【解析】根据绝对值的定义
11、解答即可.【详解】|-3|=3故选:C【点睛】本题考查的是绝对值,理解绝对值的定义是关键.8、D【解析】分析:由图1、图2结合题意可知,当DPAB时,DP最短,由此可得DP最短=y最小=,这样如图3,过点P作PDAB于点P,连接AD,结合ABC是等边三角形和点D是BC边的中点进行分析解答即可.详解:由题意可知:当DPAB时,DP最短,由此可得DP最短=y最小=,如图3,过点P作PDAB于点P,连接AD,ABC是等边三角形,点D是BC边上的中点,ABC=60,ADBC,DPAB于点P,此时DP=,BD=,BC=2BD=4,AB=4,AD=ABsinB=4sin60=,SABC=ADBC=.故选D
12、.点睛:“读懂题意,知道当DPAB于点P时,DP最短=”是解答本题的关键.9、A【解析】利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项【详解】解:、对角线相等的四边形是矩形,错误;、对角线相互垂直平分的四边形是菱形,正确;、对角线相互垂直且相等的平行四边形是正方形,正确;、对角线相互平分的四边形是平行四边形,正确;故选:【点睛】本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大10、B【解析】结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案【详解】
13、解:由图象可知,抛物线开口向下,所以正确;若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以错误,从而排除掉A和D;剩下的选项中都有,所以是正确的;易知直线y=kx+c(k0)经过点A,C,当kx+cax2+bx+c时,x的取值范围是x-4或x0,从而错误故选:B【点睛】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题二、填空题(共7小题,每小题3分,满分21分)11、1【解析】试题解析:在RtABC中,sin34=AC=ABsin34=
14、5000.56=1米.故答案为1.12、0.7【解析】用通话时间不足10分钟的通话次数除以通话的总次数即可得【详解】由图可知:小明家3月份通话总次数为20+15+10+5=50(次);其中通话不足10分钟的次数为20+15=35(次),通话时间不足10分钟的通话次数的频率是3550=0.7.故答案为0.7.13、-【解析】直接利用分式的混合运算法则即可得出.【详解】原式,.故答案为.【点睛】此题主要考查了分式的化简,正确掌握运算法则是解题关键.14、【解析】由直线abc,根据平行线分线段成比例定理,即可得,又由AC3,CE5,DF4,即可求得BD的长.【详解】解:由直线abc,根据平行线分线段
15、成比例定理,即可得,又由AC3,CE5,DF4可得:解得:BD=.故答案为.【点睛】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.15、B【解析】正五边形的内角是ABC=108,AB=BC,CAB=36,正六边形的内角是ABE=E=120,ADE+E+ABE+CAB=360,ADE=36012012036=84,故选B16、ACD=B或ADC=ACB或AD:AC=AC:AB【解析】试题分析:DAC=CAB当ACD=B或ADC=ACB或AD:AC=AC:AB时,ABCACD故答案为ACD=B或ADC=ACB或AD:AC=AC:AB考点:1相似三角形的判定;2
16、开放型17、【解析】试题解析:AH=2,HB=1,AB=AH+BH=3,l1l2l3,考点:平行线分线段成比例三、解答题(共7小题,满分69分)18、(1)-1(1)-1【解析】(1)先根据根据绝对值的意义、立方根的意义、特殊角的三角函数值、零指数幂、负整数指数幂的意义化简,然后按照实数的运算法则计算即可;(1)把括号里通分,把的分子、分母分解因式约分,然后把除法转化为乘法计算;然后求出不等式组的整数解,选一个使分式有意义的值代入计算即可.【详解】(1)原式=1+3+15=1+15=1;(1)原式=,解不等式组得:-1x则不等式组的整数解为1、0、1、1,x(x+1)0且x10,x0且x1,x
17、=1,则原式=1【点睛】本题考查了实数的运算,分式的化简求值,不等式组的解法.熟练掌握各知识点是解答本题的关键,本题的易错点是容易忽视分式有意义的条件.19、(1),;(2) 3, .【解析】(1)将代入可求出a,将A点坐标代入可求出k;(2)根据题意画出函数图像,可直接写出区域内的整点个数;求出直线的表达式为,根据图像可得到两种极限情况,求出对应的m的取值范围即可.【详解】解:(1)将代入得a=4将代入,得(2)区域内的整点个数是3直线是过点且平行于直线直线的表达式为当时,即线段PM上有整点 【点睛】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运
18、用数形结合的思想是解题关键.20、(1)EF是O的切线,理由详见解析;(1)详见解析;(3)O的半径的长为1【解析】(1)连接OE,根据等腰三角形的性质得到A=AEO,B=BEF,于是得到OEG=90,即可得到结论;(1)根据含30的直角三角形的性质证明即可;(3)由AD是O的直径,得到AED=90,根据三角形的内角和得到EOD=60,求得EGO=30,根据三角形和扇形的面积公式即可得到结论【详解】解:(1)连接OE,OA=OE,A=AEO,BF=EF,B=BEF,ACB=90,A+B=90,AEO+BEF=90,OEG=90,EF是O的切线;(1)AED=90,A=30,ED=AD,A+B=
19、90,B=BEF=60,BEF+DEG=90,DEG=30,ADE+A=90,ADE=60,ADE=EGD+DEG,DGE=30,DEG=DGE,DG=DE,DG=DA;(3)AD是O的直径,AED=90,A=30,EOD=60,EGO=30,阴影部分的面积 解得:r1=4,即r=1,即O的半径的长为1【点睛】本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键21、证明见解析.【解析】(1)根据旋转的性质可得DB=CB,ABD=EBC,ABE=60,然后根据垂直可得出DBE=CBE=30,继而可根据SAS证明BDEBCE;(2)根据(1)以及旋转
20、的性质可得,BDEBCEBDA,继而得出四条棱相等,证得四边形ABED为菱形【详解】(1)证明:BAD是由BEC在平面内绕点B旋转60而得,DB=CB,ABD=EBC,ABE=60,ABEC,ABC=90,DBE=CBE=30,在BDE和BCE中,BDEBCE;(2)四边形ABED为菱形;由(1)得BDEBCE,BAD是由BEC旋转而得,BADBEC,BA=BE,AD=EC=ED,又BE=CE,BA=BE=ED= AD四边形ABED为菱形考点:旋转的性质;全等三角形的判定与性质;菱形的判定22、内错角相等,两直线平行【解析】根据内错角相等,两直线平行即可判断【详解】EPA=CAP,ml(内错角
21、相等,两直线平行)故答案为:内错角相等,两直线平行【点睛】本题考查了作图复杂作图,平行线的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型23、(1)证明见解析;(2)60;证明见解析;【解析】试题分析:(1)根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB的长即可;(2)根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到1=2,
22、再由对顶角相等,得到5=6,即可求出所求角度数;由三角形ADF与三角形CPF相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP与三角形CFD相似,利用相似三角形对应角相等得到APF为60,由APD+DPC,求出APC为120,进而确定出APB与BPC都为120,即可得证试题解析:(1)证明:PAB+PBA=180APB=60,PBC+PBA=ABC=60,PAB=PBC,又APB=BPC=120,ABPBCP,解:ABPBCP,PB2=PAPC=12,PB=2;(2)解:ABE与ACD都为等边三角形,BAE=CAD=60,AE=AB,A
23、C=AD,BAE+BAC=CAD+BAC,即EAC=BAD,在ACE和ABD中,ACEABD(SAS),1=2,3=4,CPD=6=5=60;证明:ADFCFP,AFPF=DFCF,AFP=CFD,AFPCDFAPF=ACD=60,APC=CPD+APF=120,BPC=120,APB=360BPCAPC=120,P点为ABC的费马点考点:相似形综合题24、(1)AF=BE,AFBE;(2)证明见解析;(3)结论仍然成立【解析】试题分析:(1)根据正方形和等边三角形可证明ABEDAF,然后可得BE=AF,ABE=DAF,进而通过直角可证得BEAF;(2)类似(1)的证法,证明ABEDAF,然后可得AF=BE,AFBE,因此结论还成立;(3)类似(1)(2)证法,先证AEDDFC,然后再证ABEDAF,因此可得证结论试题解析:解:(1)AF=BE,AFBE(2)结论成立证明:四边形ABCD是正方形,BA=AD =DC,BAD =ADC = 90在EAD和FDC中,EADFDCEAD=FDCEAD+DAB=FDC+CDA,即BAE=ADF在BAE和ADF中,BAEADFBE = AF,ABE=DAFDAF +BAF=90,ABE +BAF=90,AFBE(3)结论都能成立考点:正方形,等边三角形,三角形全等