湖南省株洲荷塘区四校联考2023年中考数学仿真试卷含解析.doc

上传人:lil****205 文档编号:88308595 上传时间:2023-04-25 格式:DOC 页数:18 大小:812.50KB
返回 下载 相关 举报
湖南省株洲荷塘区四校联考2023年中考数学仿真试卷含解析.doc_第1页
第1页 / 共18页
湖南省株洲荷塘区四校联考2023年中考数学仿真试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《湖南省株洲荷塘区四校联考2023年中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《湖南省株洲荷塘区四校联考2023年中考数学仿真试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1计算36(6)的结果等于()A6B9C30D62实数 的相反数是 ( )A-BCD3某排球队名场上队员的身高(单位:)是:,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )A平均数变小,方差变小B平均数变小,方差变大C平均数变大,方差变小D平均数变大,方差

2、变大4如图,在平面直角坐标系中,P的圆心坐标是(3,a)(a3),半径为3,函数yx的图象被P截得的弦AB的长为4,则a的值是()A4B3C3D5如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A甲B乙C丙D丁6已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是()Ak8Bk8Ck8Dk87若在同一直角坐标系中,正比例函数yk1x与反比例函数y的图象无交点,则有()Ak1k20Bk1k20Ck1k20Dk1k208下列计算正确的是()A3a2a1Ba2+a5a7C(ab)3ab3Da2a4a69已知如图,ABC为直角三角形,C90,

3、若沿图中虚线剪去C,则1+2等于()A315B270C180D13510从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲21.5,S乙22.6,S丙23.5,S丁23.68,你认为派谁去参赛更合适()A甲B乙C丙D丁二、填空题(共7小题,每小题3分,满分21分)11阅读材料:如图,C为线段BD上一动点,分别过点B、D作ABBD,EDBD,连接AC、EC设CD=x,若AB=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为1根据以上阅读材料,可构图求出

4、代数式的最小值为_12同圆中,已知弧AB所对的圆心角是100,则弧AB所对的圆周角是_13如图甲,对于平面上不大于90的MON,我们给出如下定义:如果点P在MON的内部,作PEOM,PFON,垂足分别为点E、F,那么称PE+PF的值为点P相对于MON的“点角距离”,记为d(P,MON)如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于xOy,满足d(P,xOy)=10,点P的坐标是_142018年3月2日,大型记录电影厉害了,我的国登陆全国各大院线某影院针对这一影片推出了特惠活动:票价每人30元,团体购票超过10人,票价可享受八折优惠,学校计划组织全体教师观看

5、此影片若观影人数为a(a10),则应付票价总额为_元(用含a的式子表示)15一个多边形的每个内角都等于150,则这个多边形是_边形16如图,已知A+C=180,APM=118,则CQN=_17如图,在RtABC中,A=90,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠B,使点B的对应点B始终落在边AC上,若MBC为直角三角形,则BM的长为_三、解答题(共7小题,满分69分)18(10分)某厂按用户的月需求量(件)完成一种产品的生产,其中每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比经市场调研发现

6、,月需求量与月份(为整数,)符合关系式(为常数),且得到了表中的数据月份(月)12成本(万元/件)1112需求量(件/月)120100 (1)求与满足的关系式,请说明一件产品的利润能否是12万元;(2)求,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第个月和第个月的利润相差最大,求19(5分)在平面直角坐标系xOy中,一次函数的图象与y轴交于点,与反比例函数的图象交于点求反比例函数的表达式和一次函数表达式;若点C是y轴上一点,且,直接写出点C的坐标20(8分)如图,已知AB是圆O的直径,F是圆O上一点,BAF的平分线交O于点E,交O的切线BC于点C,过点E作EDAF,交A

7、F的延长线于点D求证:DE是O的切线;若DE3,CE2. 求的值;若点G为AE上一点,求OG+EG最小值21(10分)已知二次函数 ymx22mx+n 的图象经过(0,3)(1)n _;(2) 若二次函数 ymx22mx+n 的图象与 x 轴有且只有一个交点,求 m 值;(3) 若二次函数 ymx22mx+n 的图象与平行于 x 轴的直线 y5 的一个交点的横坐标为4,则另一个交点的坐标为 ;(4) 如图,二次函数 ymx22mx+n 的图象经过点 A(3,0),连接 AC,点 P 是抛物线位于线段 AC 下方图象上的任意一点,求PAC 面积的最大值22(10分)水果店张阿姨以每斤2元的价格购

8、进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?23(12分)如图所示,一艘轮船位于灯塔P的北偏东方向与灯塔的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东方向上的B处.求此时轮船所在的B处与灯塔的距离.(结果保留根号)24(14分)已知抛物线y=ax2+bx+c()若抛物线的顶点为A(2,4),抛物

9、线经过点B(4,0)求该抛物线的解析式;连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6S6+8时,求x的取值范围;()若a0,c1,当x=c时,y=0,当0xc时,y0,试比较ac与l的大小,并说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】分析:根据有理数的除法法则计算可得详解:31(1)=(311)=1 故选A点睛:本题主要考查了有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除2除以任何一个不

10、等于2的数,都得22、A【解析】根据相反数的定义即可判断.【详解】实数 的相反数是-故选A.【点睛】此题主要考查相反数的定义,解题的关键是熟知相反数的定义即可求解.3、A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为=188,方差为S2=;换人后6名队员身高的平均数为=187,方差为S2=188187,平均数变小,方差变小,故选:A.点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,xn的平均数为,则方差S2=(x1-)2+(x2-)2+(xn-)2,它反映了一组数据的波动大

11、小,方差越大,波动性越大,反之也成立.4、B【解析】试题解析:作PCx轴于C,交AB于D,作PEAB于E,连结PB,如图,P的圆心坐标是(3,a),OC=3,PC=a,把x=3代入y=x得y=3,D点坐标为(3,3),CD=3,OCD为等腰直角三角形,PED也为等腰直角三角形,PEAB,AE=BE=AB=4=2,在RtPBE中,PB=3,PE=,PD=PE=,a=3+故选B考点:1垂径定理;2一次函数图象上点的坐标特征;3勾股定理5、D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁故选D6、A【解析】本题考查反比例函数的图象和

12、性质,由k-80即可解得答案【详解】反比例函数y=的图象位于第一、第三象限,k-80,解得k8,故选A【点睛】本题考查了反比例函数的图象和性质:、当k0时,图象分别位于第一、三象限;当k0时,图象分别位于第二、四象限、当k0时,在同一个象限内,y随x的增大而减小;当k0时,在同一个象限,y随x的增大而增大7、D【解析】当k1,k2同号时,正比例函数yk1x与反比例函数y的图象有交点;当k1,k2异号时,正比例函数yk1x与反比例函数y的图象无交点,即可得当k1k20时,正比例函数yk1x与反比例函数y的图象无交点,故选D.8、D【解析】根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次

13、计算后即可解答.【详解】3a2aa,选项A不正确;a2+a5a7,选项B不正确;(ab)3a3b3,选项C不正确;a2a4a6,选项D正确故选D【点睛】本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用法则是解决问题的关键.9、B【解析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答【详解】如图,1、2是CDE的外角,1=4+C,2=3+C,即1+2=2C+(3+4),3+4=180-C=90,1+2=290+90=270故选B【点睛】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和10、A【解析】根据方差的概

14、念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.二、填空题(共7小题,每小题3分,满分21分)11、4【解析】根据已知图象,重新构造直角三角形,利用三角形相似得出CD的长,进而利用勾股定理得出最短路径问题【详解】如图所示:C为线段BD上一动点,分别过点B、D作ABBD,EDBD,连接AC、EC设CD=x,若AB=5,DE=3,BD=12,当A,C,E,在一条直线上,AE最短,ABBD,EDBD,ABDE,ABCEDC,解得:DC=即当x=时,代数式有最小值,此时为:故答案是:4【点睛】考查最短路线问题,利用了

15、数形结合的思想,可通过构造直角三角形,利用勾股定理求解12、50【解析】【分析】直接利用圆周角定理进行求解即可【详解】弧AB所对的圆心角是100,弧AB所对的圆周角为50,故答案为:50【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半13、(6,4)或(4,6)【解析】设点P的横坐标为x,表示出纵坐标,然后列方程求出x,再求解即可【详解】解:设点P的横坐标为x,则点P的纵坐标为x-2,由题意得,当点P在第一象限时,x+x-2=10,解得x=6,x-2=4,P(6,4);当点P在第三象限时,-x-x+2=10,解得x=-4,x-2=-6,P

16、(-4,-6)故答案为:(6,4)或(-4,-6)【点睛】本题主要考查了点的坐标,读懂题目信息,理解“点角距离”的定义并列出方程是解题的关键14、24a【解析】根据题意列出代数式即可【详解】根据题意得:30a0.8=24a,则应付票价总额为24a元,故答案为24a.【点睛】考查了列代数式,弄清题意是解本题的关键15、1【解析】根据多边形的内角和定理:180(n-2)求解即可【详解】由题意可得:180(n-2)=150n,解得n=1故多边形是1边形16、1【解析】先根据同旁内角互补两直线平行知ABCD,据此依据平行线性质知APM=CQM=118,由邻补角定义可得答案【详解】解:A+C=180,A

17、BCD,APM=CQM=118,CQN=180-CQM=1,故答案为:1【点睛】本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系平行线的性质是由平行关系来寻找角的数量关系17、或1【解析】图1,BMC=90,B与点A重合,M是BC的中点,所以BM=,图2,当MBC=90,A=90,AB=AC,C=45,所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,所以BM=1.【详解】请在此输入详解!三、解答题(共7小题,满分69分)18、 (1),不可能;(2)不存在;(3)1或11.【解析】试题分析:(1)根据每件的成本y(万元

18、)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,结合表格,用待定系数法求y与x之间的函数关系式,再列方程求解,检验所得结果是还符合题意;(2)将表格中的n,对应的x值,代入到,求出k,根据某个月既无盈利也不亏损,得到一个关于n的一元二次方程,判断根的情况;(3)用含m的代数式表示出第m个月,第(m+1)个月的利润,再对它们的差的情况讨论.试题解析:(1)由题意设,由表中数据,得解得.由题意,若,则.x0,.不可能.(2)将n=1,x=120代入,得120=2-2k+9k+27.解得k=13.将n=2,x=100代入也符合.k=13.由题意,得18=6+,求得x=50

19、.50=,即.,方程无实数根.不存在.(3)第m个月的利润为w=;第(m+1)个月的利润为W=.若WW,W-W=48(6-m),m取最小1,W-W=240最大.若WW,W-W=48(m-6),m+112,m取最大11,W-W=240最大.m=1或11.考点:待定系数法,一元二次方程根的判别式,二次函数的性质,二次函数的应用.19、(1)y=,y=-x+1;(2)C(0,3+1 )或C(0,1-3).【解析】(1)依据一次函数的图象与轴交于点,与反比例函数的图象交于点,即可得到反比例函数的表达式和一次函数表达式;(2)由,可得:,即可得到,再根据,可得或,即可得出点的坐标【详解】(1)双曲线过,

20、将代入,解得:所求反比例函数表达式为:点,点在直线上,所求一次函数表达式为(2)由,可得:,又,或,或,【点睛】本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题此题难度适中,注意掌握数形结合思想的应用20、(1)证明见解析(2) 3【解析】(1)作辅助线,连接OE根据切线的判定定理,只需证DEOE即可;(2)连接BE根据BC、DE两切线的性质证明ADEBEC;又由角平分线的性质、等腰三角形的两个底角相等求得ABEAFD,所以;连接OF,交AD于H,由得FOE=FOA=60,连接EF,则AOF、EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF

21、,过点G作GMOE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM =3.故OG+EG最小值是3.【详解】(1)连接OEOA=OE,AEO=EAOFAE=EAO,FAE=AEOOEAFDEAF,OEDEDE是O的切线(2)解:连接BE直径AB AEB=90圆O与BC相切ABC=90EAB+EBA=EBA+CBE=90EAB=CBEDAE=CBEADE=BEC=90ADEBEC 连接OF,交AE于G,由,设BC=2x,则AE=3xBECABC 解得:x1=2,(不合题意,舍去)AE=3x=6,BC=2x=4,AC=

22、AE+CE=8AB=,BAC=30AEO=EAO=EAF=30,FOE=2FAE=60FOE=FOA=60,连接EF,则AOF、EOF都是等边三角形,四边形AOEF是菱形由对称性可知GO=GF,过点G作GMOE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM=FOsin60o=3.故OG+EG最小值是3.【点睛】本题考查了切线的性质、相似三角形的判定与性质比较复杂,解答此题的关键是作出辅助线,利用数形结合解答21、(2)2;(2)m=2;(2)(2,5);(4)当a=时,PAC的面积取最大值,最大值为【解析】(2

23、)将(0,-2)代入二次函数解析式中即可求出n值;(2)由二次函数图象与x轴只有一个交点,利用根的判别式=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;(2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;(4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解析式,由点A、C的坐标,利用待定系数法可求出直线AC的解析式,过点P作PDx轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出SACP关于a的函数关

24、系式,配方后即可得出PAC面积的最大值【详解】解:(2)二次函数y=mx22mx+n的图象经过(0,2),n=2故答案为2(2)二次函数y=mx22mx2的图象与x轴有且只有一个交点,=(2m)24(2)m=4m2+22m=0,解得:m2=0,m2=2m0,m=2(2)二次函数解析式为y=mx22mx2,二次函数图象的对称轴为直线x=2该二次函数图象与平行于x轴的直线y=5的一个交点的横坐标为4,另一交点的横坐标为224=2,另一个交点的坐标为(2,5)故答案为(2,5)(4)二次函数y=mx22mx2的图象经过点A(2,0),0=9m6m2,m=2,二次函数解析式为y=x22x2设直线AC的

25、解析式为y=kx+b(k0),将A(2,0)、C(0,2)代入y=kx+b,得:,解得:,直线AC的解析式为y=x2过点P作PDx轴于点D,交AC于点Q,如图所示设点P的坐标为(a,a22a2),则点Q的坐标为(a,a2),点D的坐标为(a,0),PQ=a2(a22a2)=2aa2,SACP=SAPQ+SCPQ=PQOD+PQAD=a2+a=(a)2+,当a=时,PAC的面积取最大值,最大值为 【点睛】本题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当=b2-4ac=0时抛物线与x轴只有一个

26、交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出SACP关于a的函数关系式22、(1)100+200x;(2)1【解析】试题分析:(1)销售量=原来销售量下降销售量,列式即可得到结论;(2)根据销售量每斤利润=总利润列出方程求解即可得到结论试题解析:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+20=100+200x斤;(2)根据题意得:,解得:x=或x=1,每天至少售出260斤,100+200x260,x0.8,x=1答:张阿姨需将每斤的售价降低1元考点:1一元二次方程的应用;2销售问题;3综合题23、海里【解析】过点P作,则在RtAPC中易得

27、PC的长,再在直角BPC中求出PB【详解】解:如图,过点P作,垂足为点C.,海里.在中,(海里)在中,(海里).此时轮船所在的B处与灯塔P的距离是海里【点睛】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线24、()y=x2+3x当3+6S6+2时,x的取值范围为是x或x()ac1【解析】(I)由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,根据点A、B的坐标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时

28、,x0,通过分割图形求面积法结合3+6S6+2,即可求出x的取值范围,当点P在第四象限时,x0,通过分割图形求面积法结合3+6S6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0xc时y0,可得出抛物线的对称轴x=c,进而可得出b-2ac,结合b=-ac-1即可得出ac1【详解】(I)设抛物线的解析式为y=a(x+2)23,抛物线经过点B(3,0),0=a(3+2)23,解得:a=1,该抛物线的解析式为y=(x+2)23=x2+3x设直线AB的解析式为y=kx+m(k0),将A(2,3)、B(3,0)代入y=kx+m,得:,解得:,直线AB的

29、解析式为y=2x2直线l与AB平行,且过原点,直线l的解析式为y=2x当点P在第二象限时,x0,如图所示SPOB=3(2x)=3x,SAOB=33=2,S=SPOB+SAOB=3x+2(x0)3+6S6+2,即,解得:x,x的取值范围是x当点P在第四象限时,x0,过点A作AEx轴,垂足为点E,过点P作PFx轴,垂足为点F,则S四边形AEOP=S梯形AEFPSOFP=(x+2)x(2x)=3x+3SABE=23=3,S=S四边形AEOP+SABE=3x+2(x0)3+6S6+2,即,解得:x,x的取值范围为x综上所述:当3+6S6+2时,x的取值范围为是x或x(II)ac1,理由如下:当x=c时

30、,y=0,ac2+bc+c=0,c1,ac+b+1=0,b=ac1由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0)把x=0代入y=ax2+bx+c,得y=c,抛物线与y轴的交点为(0,c)a0,抛物线开口向上当0xc时,y0,抛物线的对称轴x=c,b2acb=ac1,ac12ac,ac1【点睛】本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)巧设顶点式,代入点B的坐标求出a值,分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b-2ac

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁