《湖北省襄阳市襄城区襄阳阳光校2023届中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《湖北省襄阳市襄城区襄阳阳光校2023届中考联考数学试题含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角当点P第2018次碰到矩形的边时,点P的坐标为( )A(1,4)B(7,4)C(6,4)D(8,3)2下列方程中是一元二次方程的是()ABCD3下图是某几何体的三视图,则这个几何体是( )A棱柱B圆柱C棱锥D
2、圆锥4为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.56.5组别的频率是( )A0.1B0.2C0.3D0.45二次函数的对称轴是 A直线B直线Cy轴Dx轴6下列说法中,错误的是()A两个全等三角形一定是相似形 B两个等腰三角形一定相似C两个等边三角形一定相似 D两个等腰直角三角形一定相似7函数yax2与yax+b的图象可能是()ABCD8如果两圆只有两条公切线,那么这两圆的位置关系是( )A内切B外切C相交D外离93的倒数是( )ABCD10下列图形中,可以看作中心对称图形的是( )ABCD二、填空题(本大题共6
3、个小题,每小题3分,共18分)11如图,边长为6cm的正三角形内接于O,则阴影部分的面积为(结果保留)_12分解因式:2a44a2+2_13分解因式:4a21_14月球的半径约为1738000米,1738000这个数用科学记数法表示为_15如图,在正方形ABCD中,BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:BE=2AE;DFPBPH;PFDPDB;DP2=PHPC其中正确的是_(填序号)16若a+b3,ab2,则a2+b2_三、解答题(共8题,共72分)17(8分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩
4、和演讲成绩(单位:分)分别用两种方式进行统计,如表和图ABC笔试859590口试 8085(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为 度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为 ,B同学得票数为 ,C同学得票数为 ;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断 当选(从A、B、C、选择一个填空)18(8分) “绿水青山就是金山银山”,北京市民积极参与义务植树活动小武同学为了了解自己小区300户家庭在2018
5、年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 1 2 3 2 3 2 3 3 4 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:绘制如下的统计图,请补充完整;这30户家庭2018年4月份义务植树数量的平均数是_,众数是_;(2)“互联网全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有_户19(8分)一个不透明
6、的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为()请直接写出袋子中白球的个数()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率(请结合树状图或列表解答)20(8分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和
7、扇形统计图被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?21(8分)如图,点是线段的中点,求证:22(10分)先化简,再求值:,其中m2.23(12分)如图,一次函数ykx+b的图象与反比例函数y的图象交于A(2,1),B(1,n)两点求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x的取值范围24某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m1623x请写出商场卖这
8、种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】如图,经过6次反弹后动点回到出发点(0,3),20186=3362,当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4)故选C2、C【解析】找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可【详解】解:A、当a=0时,不是一元二次方程,故本选项错误;B、是分式方程,故本选项错误;C、化简得:是一元二次方程,故
9、本选项正确;D、是二元二次方程,故本选项错误;故选:C【点睛】本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键3、D【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【详解】由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥故选D【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识4、B【解析】在5.56.5组别的频数是8,总数是40,=0.1故选B5、C【解析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案【详解】解:二次函数y=x2的对称轴为y轴故选:C 【点睛】本题考查二
10、次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k)6、B【解析】根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案【详解】解:A、两个全等的三角形一定相似,正确;B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.故选B【点睛】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换特别注意,本题是选择错误的,一定要看清楚题7、B【解析】选项中,由图
11、可知:在,;在,所以A错误;选项中,由图可知:在,;在,所以B正确;选项中,由图可知:在,;在,所以C错误;选项中,由图可知:在,;在,所以D错误故选B点睛:在函数与中,相同的系数是“”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.8、C【解析】两圆内含时,无公切线;两圆内切时,只有一条公切线;两圆外离时,有4条公切线;两圆外切时,有3条公切线;两圆相交时,有2条公切线【详解】根据两圆相交时才有2条公切线故选C【点睛】本题考查了圆与圆的位置关系熟悉两圆的不同位置关系中的外公切
12、线和内公切线的条数9、C【解析】根据倒数的定义可知解:3的倒数是主要考查倒数的定义,要求熟练掌握需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数10、B【解析】根据中心对称图形的概念求解【详解】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误故选:B【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合二、填空题(本大题共6个小题,每小题3分,共18分)11、(43)cm1【解
13、析】连接OB、OC,作OHBC于H,根据圆周角定理可知BOC的度数,根据等边三角形的性质可求出OB、OH的长度,利用阴影面积=S扇形OBC-SOBC即可得答案【详解】:连接OB、OC,作OHBC于H,则BH=HC= BC= 3,ABC为等边三角形,A=60,由圆周角定理得,BOC=1A=110,OB=OC,OBC=30,OB=1 ,OH=,阴影部分的面积= 6=43 ,故答案为:(43)cm1【点睛】本题主要考查圆周角定理及等边三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;熟练掌握圆周角定理是解题关键.12、1(a+1)1(a1)1【解析】原式提取公因式,再利用完全平方
14、公式分解即可【详解】解:原式1(a41a1+1)1(a11)11(a+1)1(a1)1,故答案为:1(a+1)1(a1)1【点睛】本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式13、(2a+1)(2a1)【解析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开【详解】4a21(2a+1)(2a1)故答案为:(2a+1)(2a-1).【点睛】此题考查多项式因式分解,根据多项式的特点选择适合的分解方法是解题的关键.14、1.7381【解析】解:将17
15、38000用科学记数法表示为1.7381故答案为1.7381【点睛】本题考查科学记数法表示较大的数,掌握科学计数法的计数形式,难度不大15、【解析】由正方形的性质和相似三角形的判定与性质,即可得出结论【详解】BPC是等边三角形,BP=PC=BC,PBC=PCB=BPC=60,在正方形ABCD中,AB=BC=CD,A=ADC=BCD=90ABE=DCF=30,BE=2AE;故正确;PC=CD,PCD=30,PDC=75,FDP=15,DBA=45,PBD=15,FDP=PBD,DFP=BPC=60,DFPBPH;故正确;FDP=PBD=15,ADB=45,PDB=30,而DFP=60,PFDPD
16、B,PFD与PDB不会相似;故错误;PDH=PCD=30,DPH=DPC,DPHCPD,DP2=PHPC,故正确;故答案是:【点睛】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理16、1【解析】根据a2+b2=(a+b)2-2ab,代入计算即可【详解】a+b3,ab2,a2+b2(a+b)22ab941故答案为:1【点睛】本题考查对完全平方公式的变形应用能力,要熟记有关完全平方的几个变形公式三、解答题(共8题,共72分)17、(1)90;(2)144度;(3)105,120,75;(4)B【解析】(1)由条形图可得A演讲得分,由表格可得C
17、笔试得分,据此补全图形即可;(2)用360乘以B对应的百分比可得答案;(3)用总人数乘以A、B、C三人对应的百分比可得答案;(4)根据加权平均数的定义计算可得【详解】解:(1)由条形图知,A演讲得分为90分,补全图形如下:故答案为90;(2)扇图中B同学对应的扇形圆心角为36040%144,故答案为144;(3)A同学得票数为30035%105,B同学得票数为30040%120,C同学得票数为30025%75,故答案为105、120、75;(4)A的最终得分为92.5(分),B的最终得分为98(分),C的最终得分为84(分),B最终当选,故答案为B【点睛】本题考查的是条形统计图的综合运用读懂统
18、计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据18、 (1) 3.4棵、3棵;(2)1.【解析】(1)由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得【详解】解:(1)由已知数据知3棵的有12人、4棵的有8人,补全图形如下:这30户家庭2018年4月份义务植树数量的平均数是(棵),众数为3棵,故答案为:3.4棵、3棵;(2)估计该小区采用这种形式的家庭有户,故答案为:1【点睛】此题考查条形统计图,加权平均数,众数,解题关键在于利用样本估计总体
19、.19、(1)袋子中白球有2个;(2)【解析】试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案试题解析:(1)设袋子中白球有x个,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,袋子中白球有2个;(2)画树状图得:共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,两次都摸到相同颜色的小球的概率为:考点:列表法与树状图法;概率公式20、(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72,(3)参与了4项或5项活
20、动的学生共有720人【解析】分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数详解:(1)被随机抽取的学生共有1428%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=360=72,活动数为5项的学生为:508141012=6,如图所示:(3)参与了4项或5项活动的学生共有2000=720(人)点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统
21、计图和扇形统计图得出解题所需的数据是解题的关键21、详见解析【解析】利用 证明 即可解决问题【详解】证明:是线段的中点在和中,【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等的条件,属于中考常考题型22、,原式.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把m的值代入计算即可求出值.【详解】原式,当m2时,原式.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23、 (1)y=,y=x1;(2)x2或0x1【解析】(1)利用点A的坐标可求出反比例函数解析式,再把B(1,n)代入反比例函数解析式,即可求得n的值,于是得
22、到一次函数的解析式;(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数的值的x的取值范围【详解】(1)A(2,1)在反比例函数y=的图象上,1=,解得m=2.反比例函数解析式为y=,B(1,n)在反比例函数上,n=2,B的坐标(1,2),把A(2,1),B(1,2)代入y=kx+b得 解得:一次函数的解析式为y=x1; (2)由图像知:当x2或0x1时,一次函数的值大于反比例函数的值.【点睛】本题考查了反比例函数与一次函数的交点问题,属于简单题,熟悉函数图像的性质是解题关键.24、(1)y=3x2+252x1(2x54);(2)商场每天销售这种商品的销售利润不能达到500元【解
23、析】(1)此题可以按等量关系“每天的销售利润=(销售价进价)每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案【详解】(1)由题意得:每件商品的销售利润为(x2)元,那么m件的销售利润为y=m(x2)又m=1623x,y=(x2)(1623x),即y=3x2+252x1x20,x2又m0,1623x0,即x54,2x54,所求关系式为y=3x2+252x1(2x54)(2)由(1)得y=3x2+252x1=3(x42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元500432,商场每天销售这种商品的销售利润不能达到500元【点睛】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价进价)每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法