福建省宁德市福鼎县2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc

上传人:茅**** 文档编号:88309416 上传时间:2023-04-25 格式:DOC 页数:18 大小:798.50KB
返回 下载 相关 举报
福建省宁德市福鼎县2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc_第1页
第1页 / 共18页
福建省宁德市福鼎县2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《福建省宁德市福鼎县2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《福建省宁德市福鼎县2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图所示,把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,如果折叠后得等腰EBA,那么结论中:A=30;点C与AB的中点重合;点E到AB的距离等于CE的长

2、,正确的个数是()A0B1C2D32如图,在RtABC中,BAC90,ABAC,ADBC,垂足为D、E,F分别是CD,AD上的点,且CEAF.如果AED62,那么DBF的度数为()A62B38C28D263某运动会颁奖台如图所示,它的主视图是( )ABCD4如图,在等腰直角ABC中,C=90,D为BC的中点,将ABC折叠,使点A与点D重合,EF为折痕,则sinBED的值是()ABCD5今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加1600,设扩大后的正方形绿地边长为xm,下面所

3、列方程正确的是( )Ax(x-60)=1600Bx(x+60)=1600C60(x+60)=1600D60(x-60)=16006在RtABC中,C90,那么sinB等于()ABCD7已知一次函数yx+2的图象,绕x轴上一点P(m,1)旋转181,所得的图象经过(11),则m的值为()A2B1C1D28已知一组数据a,b,c的平均数为5,方差为4,那么数据a2,b2,c2的平均数和方差分别是.()A3,2B3,4C5,2D5,49由一些大小相同的小正方形搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方形的个数最少是( )A4B5C6D710益阳市高新区某厂今年新招聘一批员工,他们

4、中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9172095关于这组文化程度的人数数据,以下说法正确的是:( )A众数是20B中位数是17C平均数是12D方差是2611以下各图中,能确定的是( )ABCD12如图,在RtABC中,ACB=90,A=30,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A B1 C D二、填空题:(本大题共6个小题,每小题4分,共24分)13关于的方程有增根,则_.14如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为_ 15如图,A、B是双曲

5、线y=上的两点,过A点作ACx轴,交OB于D点,垂足为C若D为OB的中点,ADO的面积为3,则k的值为_16观察下列图形:它们是按一定的规律排列的,依照此规律,第n个图形共有_个.17掷一枚材质均匀的骰子,掷得的点数为合数的概率是_ .18在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是_的(填“上升”或“下降”)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某商城销售A,B两种自行车型自行车售价为2100元辆,B型自行车售价为1750元辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80000元购进A型自行车的数量与

6、用64000元购进B型自行车的数量相等求每辆A,B两种自行车的进价分别是多少?现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13000元,求获利最大的方案以及最大利润20(6分)如图,AB是O的直径,点C是弧AB的中点,点D是O外一点,AD=AB,AD交O于F,BD交O于E,连接CE交AB于G(1)证明:C=D;(2)若BEF=140,求C的度数;(3)若EF=2,tanB=3,求CECG的值21(6分)制作一种产品,需先将材料加热达到60后,再进行操作,设该材料温度为y()从

7、加热开始计算的时间为x(min)据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图)已知在操作加热前的温度为15,加热5分钟后温度达到60分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?22(8分)计算: + 2018023(8分)解不等式组,并将它的解集在数轴上表示出来24(10分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3)(1)求该二次函数的表达式;(2)过点A的直线ADBC且

8、交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,请解答下列问题:在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,DMN的面积最大,并求出这个最大值25(10分)某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告已知

9、当这种商品每月的广告费用为m(千元)时,每月销售量将是原销售量的p倍,且p =试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!26(12分)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45调为30,如图,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:,)27(12分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30,由B处望山脚C处的俯角为45,若在A、C两地间打通一隧

10、道,求隧道最短为多少米(结果取整数,参考数据1.732)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可【详解】把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰EBA,A=EBA,CBE=EBA,A=CBE=EBA,C=90,A+CBE+EBA=90,A=CBE=EBA=30,故选项正确;A=EBA,EDB=90,AD=BD,故选项正确;C=EDB=90,CBE=EBD=30,EC=ED(角平分线上的

11、点到角的两边距离相等),点E到AB的距离等于CE的长,故选项正确,故正确的有3个故选D【点睛】此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键2、C【解析】分析:主要考查:等腰三角形的三线合一,直角三角形的性质注意:根据斜边和直角边对应相等可以证明BDFADE详解:AB=AC,ADBC,BD=CD 又BAC=90,BD=AD=CD 又CE=AF,DF=DE,RtBDFRtADE(SAS), DBF=DAE=9062=28 故选C点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键3、C【解析】从正

12、面看到的图形如图所示:,故选C4、B【解析】先根据翻折变换的性质得到DEFAEF,再根据等腰三角形的性质及三角形外角的性质可得到BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解【详解】DEF是AEF翻折而成,DEFAEF,A=EDF,ABC是等腰直角三角形,EDF=45,由三角形外角性质得CDF+45=BED+45,BED=CDF,设CD=1,CF=x,则CA=CB=2,DF=FA=2-x,在RtCDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,sinBED=sinCDF=故选B【点睛】本题考查的是图形翻折变换的性质、等腰直角三

13、角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中5、A【解析】试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x60)米,根据长方形的面积计算法则列出方程考点:一元二次方程的应用6、A【解析】根据锐角三角函数的定义得出sinB等于B的对边除以斜边,即可得出答案【详解】根据在ABC中,C=90,那么sinB= =,故答案选A.【点睛】本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.7、C【解析】根据题意得出旋转后的函数解析式为y=-x-1,然后根据解析式求得与x轴的交点坐标,结合点的坐标即可得出结论【详解】一次函数y

14、x+2的图象,绕x轴上一点P(m,1)旋转181,所得的图象经过(11),设旋转后的函数解析式为yx1,在一次函数yx+2中,令y1,则有x+21,解得:x4,即一次函数yx+2与x轴交点为(4,1)一次函数yx1中,令y1,则有x11,解得:x2,即一次函数yx1与x轴交点为(2,1)m1,故选:C【点睛】本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式本题属于基础题,难度不大8、B【解析】试题分析:平均数为(a2 + b2 + c2 )=(35-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.9、C【解析】试题分析:由题中所给出的左视图知物体共两层,每

15、一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=1故选C10、C【解析】根据众数、中位数、平均数以及方差的概念求解【详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数=12,故本选项正确;D、方差= (9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2= ,故本选项错误.故选C【点睛】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念11、C【解析】逐一对选项进行分析即可得出答案【详解】A中,利用三角形外角的性质可

16、知,故该选项错误;B中,不能确定的大小关系,故该选项错误;C中,因为同弧所对的圆周角相等,所以,故该选项正确;D中,两直线不平行,所以,故该选项错误故选:C【点睛】本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键12、B【解析】根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是ACD的中位线即可求出.【详解】ACB=90,A=30, BC=AB. BC=2, AB=2BC=22=4, D是AB的中点, CD=AB= 4=2. E,F分别为AC,AD的中点, EF是ACD的中位线. EF=CD= 2=1.故答案选B.【点睛】本题考查的知识点是三角形

17、中位线定理,解题的关键是熟练的掌握三角形中位线定理.二、填空题:(本大题共6个小题,每小题4分,共24分)13、-1【解析】根据分式方程10有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入x=1可求得a=-1.故答案为-1.点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数.14、【解析】设扇形的圆心角为n,则根据扇形的弧长公式有: ,解得 所以15、1【解析】过点B作BEx轴于点E,根据D为OB的中点可知CD是OBE的中位线,即CD=BE,设A(x

18、,),则B(2x,),故CD=,AD=,再由ADO的面积为1求出k的值即可得出结论解:如图所示,过点B作BEx轴于点E,D为OB的中点,CD是OBE的中位线,即CD=BE设A(x,),则B(2x,),CD=,AD=,ADO的面积为1,ADOC=3,()x=3,解得k=1,故答案为116、【解析】分别求出第1个、第2个、第3个、第4个图形中的个数,得到第5个图形中的个数,进而找到规律,得出第n个图形中的个数,即可求解【详解】第1个图形中有1+31=4个,第2个图形中有1+32=7个,第3个图形中有1+33=10个,第4个图形中有1+34=13个,第5个图形中有1+35=16个,第n个图形中有1+

19、3n=(3n+1)个故答案是:1+3n.【点睛】考查了规律型:图形的变化类;根据图形中变化的量和n的关系与不变的量得到图形中的个数与n的关系是解决本题的关键17、【解析】分析:根据概率的求法,找准两点: 全部情况的总数; 符合条件的情况数目;二者的比值就是其发生的概率详解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、5、6中的任意一个数,共有六种可能,其中4、6是合数,所以概率为= 故答案为点睛:本题主要考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比18、下降【解析】根据抛物线y=3x2+2x图像性质可得,在对称轴的左侧部分是下降的.【详解】解:在中,抛物线开口向上,

20、在对称轴左侧部分y随x的增大而减小,即图象是下降的,故答案为下降【点睛】本题考查二次函数的图像及性质.根据抛物线开口方向和对称轴的位置即可得出结论.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;(2)当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元【解析】(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+10)元,根据题意列出方程,求出方程的解即可得到结果;(2)由总利润=单辆利润辆数,列出y与x的关系式,利用一次函数性质确定出所求即可

21、.【详解】(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+10)元,根据题意,得=,解得x=1600,经检验,x=1600是原方程的解,x+10=1 600+10=2 000,答:每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;(2)由题意,得y=(21002000)m+(17501600)(100m)=50m+15000,根据题意,得,解得:33m1,m为正整数,m=34,35,36,37,38,39,1y=50m+15000,k=500,y随m的增大而减小,当m=34时,y有最大值,最大值为:5034+15000=13300(元)答:当购进A型自行

22、车34辆,B型自行车66辆时获利最大,最大利润为13300元【点睛】本题主要考查一次函数的应用、分式方程的应用及一元一次不等式组的应用.仔细审题,找出题目中的数量关系是解答本题的关键.20、(1)见解析;(2)70;(3)1【解析】(1)先根据等边对等角得出B=D,即可得出结论;(2)先判断出DFE=B,进而得出D=DFE,即可求出D=70,即可得出结论;(3)先求出BE=EF=2,进而求AE=6,即可得出AB,进而求出AC,再判断出ACGECA,即可得出结论【详解】(1)AB=AD,B=D,B=C,C=D;(2)四边形ABEF是圆内接四边形,DFE=B,由(1)知,B=D,D=DFE,BEF

23、=140=D+DFE=2D,D=70,由(1)知,C=D,C=70;(3)如图,由(2)知,D=DFE,EF=DE,连接AE,OC,AB是O的直径,AEB=90,BE=DE,BE=EF=2,在RtABE中,tanB=3,AE=3BE=6,根据勾股定理得,AB=,OA=OC=AB=,点C是 的中点, ,AOC=90,AC=OA=2,CAG=CEA,ACG=ECA,ACGECA,CECG=AC2=1【点睛】本题是几何综合题,涉及了圆的性质,圆周角定理,勾股定理,锐角三角函数,相似三角形的判定和性质,圆内接四边形的性质,等腰三角形的性质等,综合性较强,有一定的难度,熟练掌握和灵活运用相关知识是解题的

24、关键.本题中求出BE=2也是解题的关键21、(1);(2)20分钟.【解析】(1)材料加热时,设y=ax+15(a0),由题意得60=5a+15,解得a=9,则材料加热时,y与x的函数关系式为y=9x+15(0x5)停止加热时,设y=(k0),由题意得60=,解得k=300,则停止加热进行操作时y与x的函数关系式为y=(x5);(2)把y=15代入y=,得x=20,因此从开始加热到停止操作,共经历了20分钟答:从开始加热到停止操作,共经历了20分钟22、2【解析】根据实数的混合运算法则进行计算.【详解】解:原式= -( -1)+1=- +1+1=2【点睛】此题重点考察学生对实数的混合运算的应用

25、,熟练掌握计算方法是解题的关键.23、x1,解集表示在数轴上见解析【解析】首先根据不等式的解法求解不等式,然后在数轴上表示出解集【详解】去分母,得:3x2(x1)3,去括号,得:3x2x+23,移项,得:3x2x32,合并同类项,得:x1,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式,解题的关键是掌握不等式的解法以及在数轴上表示不等式的解集24、(1)y=x2+2x+3;(2)y=x1;(3)P()或P(4.5,0);当t=时,SMDN的最大值为【解析】(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到结果;(2)在y=-x2+2x+3中,令y=0,则-x2+2

26、x+3=0,得到B(3,0),由已知条件得直线BC的解析式为y=-x+3,由于ADBC,设直线AD的解析式为y=-x+b,即可得到结论;(3)由BCAD,得到DAB=CBA,全等只要当或时,PBCABD,解方程组得D(4,5),求得设P的坐标为(x,0),代入比例式解得或x=4.5,即可得到或P(4.5,0);过点B作BFAD于F,过点N作NEAD于E,在RtAFB中,BAF=45,于是得到sinBAF 求得求得 由于于是得到即可得到结果【详解】(1)由题意知: 解得 二次函数的表达式为 (2)在 中,令y=0,则 解得: B(3,0),由已知条件得直线BC的解析式为y=x+3,ADBC,设直

27、线AD的解析式为y=x+b,0=1+b,b=1,直线AD的解析式为y=x1;(3)BCAD,DAB=CBA,只要当:或时,PBCABD,解得D(4,5), 设P的坐标为(x,0),即或 解得或x=4.5,或P(4.5,0),过点B作BFAD于F,过点N作NEAD于E,在RtAFB中, sinBAF 又 当时,的最大值为【点睛】属于二次函数的综合题,考查待定系数法求二次函数解析式,锐角三角形函数,相似三角形的判定与性质,二次函数的最值等,综合性比较强,难度较大.25、方案二能获得更大的利润;理由见解析【解析】方案一:由利润=(实际售价-进价)销售量,列出函数关系式,再用配方法求最大利润;方案二:

28、由利润=(售价-进价)500p-广告费用,列出函数关系式,再用配方法求最大利润【详解】解:设涨价x元,利润为y元,则方案一:涨价x元时,该商品每一件利润为:50+x40,销售量为:50010x,当x=20时,y最大=9000,方案一的最大利润为9000元;方案二:该商品售价利润为=(5040)500p,广告费用为:1000m元,方案二的最大利润为10125元;选择方案二能获得更大的利润.【点睛】本题考查二次函数的实际应用,根据题意,列出函数关系式,配方求出最大值.26、改善后滑板会加长1.1米【解析】在RtABC中,根据AB=4米,ABC=45,求出AC的长度,然后在RtADC中,解直角三角形

29、求AD的长度,用AD-AB即可求出滑板加长的长度【详解】解:在RtABC中,AC=ABsin45=4=,在RtADC中,AD=2AC=,AD-AB=-41.1答:改善后滑板会加长1.1米【点睛】本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键27、隧道最短为1093米【解析】【分析】作BDAC于D,利用直角三角形的性质和三角函数解答即可【详解】如图,作BDAC于D,由题意可得:BD=14001000=400(米),BAC=30,BCA=45,在RtABD中,tan30=,即,AD=400(米),在RtBCD中,tan45=,即,CD=400(米),AC=AD+CD=400+4001092.81093(米),答:隧道最短为1093米【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁