《福建省建瓯市第四中学2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《福建省建瓯市第四中学2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,点P是AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PMN周长的最小值是5cm,则AOB的度数是( )ABCD2二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函
2、数y=在同一平面直角坐标系中的图象可能是()ABCD3如图,在ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C)若线段AD长为正整数,则点D的个数共有( )A5个B4个C3个D2个4关于的一元二次方程有两个不相等的实数根,则实数的取值范围是ABCD5抛物线yx22x3的对称轴是( )A直线x1B直线x1C直线x2D直线x26如图,ABC的面积为8cm2 , AP垂直B的平分线BP于P,则PBC的面积为( )A2cm2B3cm2C4cm2D5cm27地球上的陆地面积约为149 000 000千米2,用科学记数法表示为 ( )A149106千米2 B14.9107千米2 C
3、1.49108千米2 D0.149109千28已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若ABP组成的三角形恰为等腰直角三角形,则b24ac的值为()A1B4C8D129今年春节某一天早7:00,室内温度是6,室外温度是2,则室内温度比室外温度高( )A4B4C8D810已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A6 B7 C11 D1211在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是()A千里江山图B京津冀协同发展C内蒙古自治区成立七十周年D河北雄安新区建立纪念12如图,平面直角坐标系xOy中,四边形OABC的边OA
4、在x轴正半轴上,BCx轴,OAB90,点C(3,2),连接OC以OC为对称轴将OA翻折到OA,反比例函数y的图象恰好经过点A、B,则k的值是()A9BCD3二、填空题:(本大题共6个小题,每小题4分,共24分)13比较大小:_(填“,“=“,“)14如图,在直角三角形ABC中,ACB=90,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是_15如图,P是O的直径AB延长线上一点,PC切O于点C,PC=6,BC:AC=1:2,则AB的长为_16如图,在每个小正方形的边长为1的网格中,点A,B,C,D均在格点
5、上,AB与CD相交于点E(1)AB的长等于_;(2)点F是线段DE的中点,在线段BF上有一点P,满足,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_17如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为_.18计算:a3(a)2=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF(1)说明BEF是等腰三角形;(2)求折痕EF的长20(6分)如图,已知直线与抛物线相交于A,B
6、两点,且点A(1,4)为抛物线的顶点,点B在x轴上(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使POB与POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且ABQ为直角三角形,求点Q的坐标21(6分)已知矩形ABCD,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部(如图),将半圆O绕点A顺时针旋转度(0180)(1)半圆的直径落在对角线AC上时,如图所示,半圆与AB的交点为M,求AM的长;(2)半圆与直线CD相切时,切点为N,与线段AD的交点为P,如图所示,求劣弧AP的长;(3)在旋转过程中,半圆弧与直线CD只有
7、一个交点时,设此交点与点C的距离为d,直接写出d的取值范围22(8分)(1)问题发现如图1,在RtABC中,A=90,=1,点P是边BC上一动点(不与点B重合),PAD=90,APD=B,连接 CD(1)求的值;求ACD的度数(2)拓展探究如图 2,在RtABC中,A=90,=k点P是边BC上一动点(不与点B重合),PAD=90,APD=B,连接CD,请判断ACD与B 的数量关系以及PB与CD之间的数量关系,并说明理由(3)解决问题如图 3,在ABC中,B=45,AB=4,BC=12,P 是边BC上一动点(不与点B重合),PAD=BAC,APD=B,连接CD若 PA=5,请直接写出CD的长23
8、(8分)如图,在ABC中,AB=AC,ABC=72(1)用直尺和圆规作ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出ABC的平分线BD后,求BDC的度数24(10分)如图,在锐角ABC中,小明进行了如下的尺规作图:分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分别相交于点P、Q;作直线PQ分别交边AB、BC于点E、D小明所求作的直线DE是线段AB的 ;联结AD,AD7,sinDAC,BC9,求AC的长25(10分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水
9、位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角BAE=68,新坝体的高为DE,背水坡坡角DCE=60.求工程完工后背水坡底端水平方向增加的宽度AC(结果精确到0.1米,参考数据:sin 680.93,cos 680.37,tan 682.5,1.73)26(12分)如图,在平面直角坐标系xOy中,直线yx+b与双曲线y相交于A,B两点,已知A(2,5)求:b和k的值;OAB的面积27(12分)如图,点A(m,m1),B(m1,2m3)都在反比例函数的图象上(1)求m,k的值; (2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形,
10、试求直线MN的函数表达式参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时PMN的周长最小由线段垂直平分线性质可得出PMN的周长就是P3P3的长,OP=3,OP3=OP3=OP=3又P3P3=3,,OP3=OP3=P3P3,OP3P3是等边三角形, P3OP3=60,即3(AOP+BOP)=60,AOP+BOP=30,即AOB=30,故选B考点:3线段垂直平分线性质;3轴对称作图2、C【解析】试题分析:二
11、次函数图象开口方向向下,a0,对称轴为直线0,b0,与y轴的正半轴相交,c0,的图象经过第一、二、四象限,反比例函数图象在第一三象限,只有C选项图象符合故选C考点:1二次函数的图象;2一次函数的图象;3反比例函数的图象3、C【解析】试题分析:过A作AEBC于E,AB=AC=5,BC=8,BE=EC=4,AE=3,D是线段BC上的动点(不含端点B,C),AEADAB,即3AD5,AD为正整数,AD=3或AD=4,当AD=4时,E的左右两边各有一个点D满足条件,点D的个数共有3个故选C考点:等腰三角形的性质;勾股定理4、A【解析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即
12、可【详解】关于x的一元二次方程x23x+m=0有两个不相等的实数根,=b24ac=(3)241m0,m,故选A【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式的关系,即:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根5、B【解析】根据抛物线的对称轴公式:计算即可【详解】解:抛物线yx22x3的对称轴是直线故选B【点睛】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键6、C【解析】延长AP交BC于E,根据AP垂直B的平分线BP于P,即可求出ABPBEP,又知APC和CPE等底同高,可以证明两三角形面积
13、相等,即可求得PBC的面积【详解】延长AP交BC于EAP垂直B的平分线BP于P,ABPEBP,APBBPE90在APB和EPB中,APBEPB(ASA),SAPBSEPB,APPE,APC和CPE等底同高,SAPCSPCE,SPBCSPBE+SPCESABC4cm1故选C【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出SPBCSPBE+SPCESABC7、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n
14、是负数解:149000000=1.492千米1故选C把一个数写成a10n的形式,叫做科学记数法,其中1|a|10,n为整数因此不能写成149106而应写成1.4928、B【解析】设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),利用二次函数的性质得到P(-,),利用x1、x2为方程ax2+bx+c=0的两根得到x1+x2=-,x1x2=,则利用完全平方公式变形得到AB=|x1-x2|= ,接着根据等腰直角三角形的性质得到|=,然后进行化简可得到b2-1ac的值【详解】设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),顶点P的坐标为(-,),则x1、x2为方程ax
15、2+bx+c=0的两根,x1+x2=-,x1x2=,AB=|x1-x2|=,ABP组成的三角形恰为等腰直角三角形,|=,=,b2-1ac=1故选B【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质和等腰直角三角形的性质9、C【解析】根据题意列出算式,计算即可求出值【详解】解:根据题意得:6-(-2)=6+2=8,则室内温度比室外温度高8,故选:C【点睛】本题考查了有理数的减法,熟练掌握运算法则是解题的关键10、C【解析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x
16、+2y=5代入计算即可求出值【详解】x+2y=5,2x+4y=10,则2x+4y+1=10+1=1故选C【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型11、C【解析】根据中心对称图形的概念求解【详解】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误故选C【点睛】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合12、C【解析】设B(,2),由翻折知OC垂直平分AA,AG2EF,AG2AF,由勾股定理得OC,根据相似三角形
17、或锐角三角函数可求得A(,),根据反比例函数性质kxy建立方程求k【详解】如图,过点C作CDx轴于D,过点A作AGx轴于G,连接AA交射线OC于E,过E作EFx轴于F,设B(,2),在RtOCD中,OD3,CD2,ODC90,OC,由翻折得,AAOC,AEAE,sinCOD,AE,OAE+AOE90,OCD+AOE90,OAEOCD,sinOAEsinOCD,EF,cosOAEcosOCD,EFx轴,AGx轴,EFAG,A(,),k0,故选C【点睛】本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B的坐标,表示出点A的坐标
18、二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】先比较它们的平方,进而可比较与的大小.【详解】()2=80,()2=100,80100,故答案为:.【点睛】本题考查了实数的大小比较,带二次根号的实数,在比较它们的大小时,通常先比较它们的平方的大小.14、4【解析】连接把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为的面积的2倍【详解】解:连接OP、OB,图形BAP的面积=AOB的面积+BOP的面积+扇形OAP的面积,图形BCP的面积=BOC的面积+扇形OCP的面积BOP的面积,又点P是半圆弧AC的中点,OA=OC,扇形OAP的面积=扇形OCP的面积
19、,AOB的面积=BOC的面积,两部分面积之差的绝对值是 点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.15、1【解析】PC切O于点C,则PCB=A,P=P,PCBPAC,,BP=PC=3,PC2=PBPA,即36=3PA,PA=12AB=12-3=1故答案是:1.16、 见图形 【解析】分析:()利用勾股定理计算即可; ()连接AC、BD易知:ACBD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F,因为DGCH,所以FD:FC=DG:CH=5:8,可得DF=EF取格点I、J,连接IJ交BD于K,因为BIDJ,所以BK:DK=BI
20、:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3;详解:()AB的长=;()由题意:连接AC、BD易知:ACBD,可得:EC:ED=AC:BD=3:1取格点G、H,连接GH交DE于F DGCH,FD:FC=DG:CH=5:8,可得DF=EF 取格点I、J,连接IJ交BD于K BIDJ,BK:DK=BI:DJ=5:2连接EK交BF于P,可证BP:PF=5:3 故答案为();()由题意:连接AC、BD 易知:ACBD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F因为DGCH,所以FD:FC=DG:CH=5:8,可得DF=EF 取格点I、J,连接IJ交BD于K因为
21、BIDJ,所以BK:DK=BI:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3点睛:本题考查了作图应用与设计,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型17、xx75.【解析】试题解析:设长方形墙砖的长为x厘米,可得:xx75.18、a【解析】利用整式的除法运算即可得出答案.【详解】原式,.【点睛】本题考查的知识点是整式的除法,解题关键是先将变成,再进行运算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析;(2).【解析】(1)根据折叠得出DEF=BEF,根据矩形的性质得出ADBC,求出DE
22、F=BFE,求出BEF=BFE即可;(2)过E作EMBC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在RtEMF中,由勾股定理求出即可【详解】(1)现将纸片折叠,使点D与点B重合,折痕为EF,DEF=BEF四边形ABCD是矩形,ADBC,DEF=BFE,BEF=BFE,BE=BF,即BEF是等腰三角形;(2)过E作EMBC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM现将纸片折叠,使点D与点B重合,折痕为EF,DE=BE,DO=BO,BDEF四边形ABCD是矩形,BC=8,AD=BC=8,BAD=90在
23、RtABE中,AE2+AB2=BE2,即(8BE)2+62=BE2,解得:BE=DE=BF,AE=8DE=8=BM,FM=在RtEMF中,由勾股定理得:EF=故答案为【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键20、解:(1);(2)存在,P(,);(1)Q点坐标为(0,-)或(0,)或(0,1)或(0,1).【解析】(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C的坐标,在POB和POC中,已知的条件是公
24、共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:POC=POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=-x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.(1)分别以A、B、Q为直角顶点,分类进行讨论,找出相关的相似三角形,依据对应线段成比例进行求解即可.【详解】解:(1)把A(1,4)代入ykx6,得k2,y2x6,令y0,解得:x1,B的坐标是(1,0)A为顶点,设抛物线的解析为ya(x1)24,把B(1,0)代入得:4a40,解得a1,y(x1)24x22x1 (2)存在
25、OBOC1,OPOP,当POBPOC时,POBPOC,此时PO平分第二象限,即PO的解析式为yx设P(m,m),则mm22m1,解得m(m0,舍),P(,) (1)如图,当Q1AB90时,DAQ1DOB,即=,DQ1,OQ1,即Q1(0,-);如图,当Q2BA90时,BOQ2DOB,即,OQ2,即Q2(0,);如图,当AQ1B90时,作AEy轴于E,则BOQ1Q1EA,即OQ124OQ1+10,OQ11或1,即Q1(0,1),Q4(0,1)综上,Q点坐标为(0,-)或(0,)或(0,1)或(0,1)21、(2)AM=;(2)=;(3)4-d4或d=4+【解析】(2)连接BM,则BMA=90,在
26、RtABC中,利用勾股定理可求出AC的长度,由B=BMA=90、BCA=MAB可得出ABCAMB,根据相似三角形的性质可求出AM的长度; (2)连接OP、ON,过点O作OGAD于点G,则四边形DGON为矩形,进而可得出DG、AG的长度,在RtAGO中,由AO=2、AG=2可得出OAG=60,进而可得出AOP为等边三角形,再利用弧长公式即可求出劣弧AP的长; (3)由(2)可知:AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B在直线CD上的图形,在RtABD中(点B在点D左边),利用勾股定理可求出BD的长度进而可得出CB的长度,再结合图形即可得出:半
27、圆弧与直线CD只有一个交点时d的取值范围【详解】(2)在图2中,连接BM,则BMA=90在RtABC中,AB=4,BC=3,AC=2B=BMA=90,BCA=MAB,ABCAMB,=,即=,AM=;(2)在图3中,连接OP、ON,过点O作OGAD于点G,半圆与直线CD相切,ONDN,四边形DGON为矩形,DG=ON=2,AG=AD-DG=2在RtAGO中,AGO=90,AO=2,AG=2,AOG=30,OAG=60又OA=OP,AOP为等边三角形,=(3)由(2)可知:AOP为等边三角形,DN=GO=OA=,CN=CD+DN=4+当点B在直线CD上时,如图4所示,在RtABD中(点B在点D左边
28、),AB=4,AD=3,BD=,CB=4-AB为直径,ADB=90,当点B在点D右边时,半圆交直线CD于点D、B当半圆弧与直线CD只有一个交点时,4-d4或d=4+【点睛】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(2)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出OAG=60;(3)依照题意画出图形,利用数形结合求出d的取值范围22、(1)1,45;(2)ACD=B, =k;(3).【解析】(1)根据已知条件推出ABPACD,根据全等三角形的性质得到PB=CD,ACD=B=45,于是得到 根据已知条件得到ABCAPD
29、,由相似三角形的性质得到,得到 ABPCAD,根据相似三角形的性质得到结论;过A作AHBC 于 H,得到ABH 是等腰直角三角形,求得 AH=BH=4, 根据勾股定理得到根据相似三角形的性质得到 ,推出ABPCAD,根据相似三角形的性质即可得到结论【详解】(1)A=90,AB=AC,B=45,PAD=90,APD=B=45,AP=AD,BAP=CAD,在ABP 与ACD 中,AB=AC, BAP=CAD,AP=AD,ABPACD,PB=CD,ACD=B=45,=1,(2)BAC=PAD=90,B=APD,ABCAPD,BAP+PAC=PAC+CAD=90,BAP=CAD,ABPCAD,ACD=
30、B,(3)过 A 作 AHBC 于 H,B=45,ABH 是等腰直角三角形, AH=BH=4,BC=12,CH=8,PH=3,PB=1,BAC=PAD=,B=APD,ABCAPD,,BAP+PAC=PAC+CAD,BAP=CAD,ABPCAD,即 过 A 作 AHBC 于 H,B=45,ABH 是等腰直角三角形, AH=BH=4,BC=12,CH=8,PH=3,PB=7,BAC=PAD=,B=APD,ABCAPD,BAP+PAC=PAC+CAD,BAP=CAD,ABPCAD,即 【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形
31、的判定和性质是解题的关键23、(1)作图见解析(2)BDC=72【解析】解:(1)作图如下:(2)在ABC中,AB=AC,ABC=72,A=1802ABC=180144=36AD是ABC的平分线,ABD=ABC=72=36BDC是ABD的外角,BDC=A+ABD=36+36=72(1)根据角平分线的作法利用直尺和圆规作出ABC的平分线:以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;分别以点E、F为圆心,大于EF为半径画圆,两圆相较于点G,连接BG交AC于点D(2)先根据等腰三角形的性质及三角形内角和定理求出A的度数,再由角平分线的性质得出ABD的度数,再根据三角形外角的性质得出B
32、DC的度数即可24、(1)线段AB的垂直平分线(或中垂线);(2)AC5【解析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得ADBD,得到CD2,又因为已知sinDAC=,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.【详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DFAC,垂足为点F,如图,DE是线段AB的垂直平分线,ADBD7CDBCBD2,在RtADF中,sinDAC,DF1,在RtADF中,AF,
33、在RtCDF中,CF,ACAF+CF【点睛】本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.25、工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.【解析】解:在RtBAE中,BAE=680,BE=162米,(米)在RtDEC中,DGE=600,DE=176.6米,(米)(米)工程完工后背水坡底端水平方向增加的宽度AC约为37.3米在RtBAE和RtDEC中,应用正切函数分别求出AE和CE的长即可求得AC的长26、(1)b=3,k=10;(2)SAOB=【解析】(1)由直线y=x+b与双曲线y=相交于A、
34、B两点,A(2,5),即可得到结论;(2)过A作ADx轴于D,BEx轴于E,根据y=x+3,y=,得到(-5,-2),C(-3,0)求出OC=3,然后根据三角形的面积公式即可得到结论.解:()把代入把代入,(),时,又, 27、(1)m3,k12;(2)或【解析】【分析】(1)把A(m,m1),B(m3,m1)代入反比例函数y,得km(m1)(m3)(m1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A作AMx轴于点M,过点B作BNy轴于点N,两线交于点P.根据平行四边形判定和勾股定理可求出M,N的坐标.【详解】解:(1)点A(m,m1),B(m3,m1)都在反比例函数y的图像上,
35、kxy,km(m1)(m3)(m1),m2mm22m3,解得m3,k3(31)12.(2)m3,A(3,4),B(6,2)设直线AB的函数表达式为ykxb(k0),则 解得 直线AB的函数表达式为yx6.(3)M(3,0),N(0,2)或M(3,0),N(0,2)解答过程如下:过点A作AMx轴于点M,过点B作BNy轴于点N,两线交于点P.由(1)知:A(3,4),B(6,2),APPM2,BPPN3,四边形ANMB是平行四边形,此时M(3,0),N(0,2)当M(3,0),N(0,2)时,根据勾股定理能求出AMBN,ABMN,即四边形AMNB是平行四边形故M(3,0),N(0,2)或M(3,0),N(0,2)【点睛】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.