《湖南省长沙市雅礼中学2023届中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《湖南省长沙市雅礼中学2023届中考数学五模试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1中华人民共和国国家统计局网站公布,2016年国内生产总值约为74300亿元,将74300亿用科学计数
2、法可以表示为( )ABCD22018的相反数是()A2018B2018C2018D3下列运算中正确的是( )Ax2x8=x6Baa2=a2C(a2)3=a5D(3a)3=9a34如图,点O在第一象限,O与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O的坐标是()A(6,4)B(4,6)C(5,4)D(4,5)5已知二次函数 图象上部分点的坐标对应值列表如下:x-3-2-1012y2-1-2-127则该函数图象的对称轴是( )Ax=-3Bx=-2Cx=-1Dx=06如图,在RtABC中,ACB90,CD是AB边上的中线,AC8,BC6,则ACD的正切值是()ABCD7如图,直线a
3、、b被c所截,若ab,1=45,2=65,则3的度数为( )A110B115C120D1308函数在同一直角坐标系内的图象大致是()ABCD9下列计算正确的是()A +BC6D410甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:甲步行的速度为60米/分;乙走完全程用了32分钟;乙用16分钟追上甲;乙到达终点时,甲离终点还有300米其中正确的结论有()A1个B2个C3个D4个11如图,在RtABC中,BAC=90,将ABC绕点A顺时针旋转9
4、0后得到ABC(点B的对应点是点B,点C的对应点是点C,连接CC.若CCB=32,则B的大小是( )A32B64C77D8712如图:将一个矩形纸片,沿着折叠,使点分别落在点处.若,则的度数为( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为_14如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标(6,0),B的坐标(0,8),点C的坐标(2,4),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个
5、单位长度的速度沿OAB路线向终点B匀速运动,动点N从O点开始,以每秒2个单位长度的速度沿OCBA路线向终点A匀速运动,点M,N同时从O点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t秒(t0),OMN的面积为S则:AB的长是_,BC的长是_,当t3时,S的值是_15分解因式:_.16已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是_17王经理到襄阳出差带回襄阳特产孔明菜若干袋,分给朋友们品尝如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜_袋18若正多边形的一个内角等于120,则这个正多边形的边数是_三、解答题:(本大题共9个小题,共
6、78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5)()求二次函数的解析式及点A,B的坐标;()设点Q在第一象限的抛物线上,若其关于原点的对称点Q也在抛物线上,求点Q的坐标;()若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标20(6分)抛物线y=x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P(1)求该抛物线的解析式和顶
7、点坐标;(2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可)21(6分)如图,A=B,AE=BE,点D在AC边上,1=2,AE和BD相交于点O求证:AECBED;若1=40,求BDE的度数22(8分)某商店老板准备购买A、B两种型号的足球共100只,已知A型号足球进价每只40元,B型号足球进价每只60元(1)若该店老板共花费了5200元,那么A、B型号足球各进了多少只;(2)若B型号足球数量不少于A型号足球数量的,那么进多少只A
8、型号足球,可以让该老板所用的进货款最少?23(8分)化简(),并说明原代数式的值能否等于-124(10分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N(1)求点D的坐标.(2)求点M的坐标(用含a的代数式表示).(3)当点N在第一象限,且OMB=ONA时,求a的值25(10分)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在ABC中,点O在线段BC上,BAO=30,OAC=75,AO=,BO:CO=1:3,求AB的长经过社团成员讨论发现,过点B作BDAC,交AO的
9、延长线于点D,通过构造ABD就可以解决问题(如图2)请回答:ADB= ,AB= 请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,ACAD,AO=,ABC=ACB=75,BO:OD=1:3,求DC的长26(12分)如图,分别延长ABCD的边到,使,连接EF,分别交于,连结求证:27(12分)先化简,再求值:,其中x=1参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,
10、n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:74300亿=7.431012,故选:D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、B【解析】分析:只有符号不同的两个数叫做互为相反数详解:-1的相反数是1故选:B点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键3、A【解析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分
11、别乘方,再把所得的幂相乘进行计算即可【详解】解:A、x2x8=x-6,故该选项正确;B、aa2=a3,故该选项错误;C、(a2)3=a6,故该选项错误;D、(3a)3=27a3,故该选项错误;故选A【点睛】此题主要考查了同底数幂的乘除法、幂的乘方和积的乘方,关键是掌握相关运算法则4、D【解析】过O作OCAB于点C,过O作ODx轴于点D,由切线的性质可求得OD的长,则可得OB的长,由垂径定理可求得CB的长,在RtOBC中,由勾股定理可求得OC的长,从而可求得O点坐标【详解】如图,过O作OCAB于点C,过O作ODx轴于点D,连接OB,O为圆心,AC=BC,A(0,2),B(0,8),AB=82=6
12、,AC=BC=3,OC=83=5,O与x轴相切,OD=OB=OC=5,在RtOBC中,由勾股定理可得OC=4,P点坐标为(4,5),故选:D.【点睛】本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.5、C【解析】由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴【详解】解:x=-2和x=0时,y的值相等,二次函数的对称轴为,故答案为:C【点睛】本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键6、D【解析】根据直角三角形斜边上的中线等于斜边的一半可得CDAD,再根据等边对等角的性质可得AACD,然后根据正切函数的定义列式
13、求出A的正切值,即为tanACD的值【详解】CD是AB边上的中线,CDAD,AACD,ACB90,BC6,AC8,tanA,tanACD的值故选D【点睛】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出AACD是解本题的关键7、A【解析】试题分析:首先根据三角形的外角性质得到1+2=4,然后根据平行线的性质得到3=4求解解:根据三角形的外角性质,1+2=4=110,ab,3=4=110,故选A点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小8、C【解析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,
14、逐一排除【详解】当a0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=-0,且a0,则b0,但B中,一次函数a0,b0,排除B故选C9、B【解析】根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把 化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断【详解】解:A、与不能合并,所以A选项不正确;B、-=2=,所以B选项正确;C、=,所以C选项不正确;D、=2=2,所以D选项不正确故选B【点睛】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式
15、和计算方法计算10、A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题【详解】由图可得,甲步行的速度为:2404=60米/分,故正确,乙走完全程用的时间为:2400(166012)=30(分钟),故错误,乙追上甲用的时间为:164=12(分钟),故错误,乙到达终点时,甲离终点距离是:2400(4+30)60=360米,故错误,故选A【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.11、C【解析】试题分析:由旋转的性质可知,AC=AC,CAC=90,可知CAC为等腰直角三角形,则CCA=45CCB=32,CBA=CCA+
16、CCB=45+32=77,B=CBA,B=77,故选C考点:旋转的性质12、B【解析】根据折叠前后对应角相等可知解:设ABE=x,根据折叠前后角相等可知,C1BE=CBE=50+x,所以50+x+x=90,解得x=20故选B“点睛”本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等二、填空题:(本大题共6个小题,每小题4分,共24分)13、5.51【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的
17、位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数详解:5.5亿=5 5000 0000=5.51,故答案为5.51点睛:此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值14、10, 1, 1 【解析】作CDx轴于D,CEOB于E,由勾股定理得出AB10,OC1,求出BEOBOE4,得出OEBE,由线段垂直平分线的性质得出BCOC1;当t3时,N到达C点,M到达OA的中点,OM3,ONOC1,由三角形面积公式即可得出OMN的面积【详解】解:作CDx轴于D,CEOB于E,如图所示:由题意得:OA1,
18、OB8,AOB90,AB10;点C的坐标(2,4),OC1,OE4,BEOBOE4,OEBE,BCOC1;当t3时,N到达C点,M到达OA的中点,OM3,ONOC1,OMN的面积S341;故答案为:10,1,1【点睛】本题考查了勾股定理、坐标与图形性质、线段垂直平分线的性质、三角形面积公式等知识;熟练掌握勾股定理是解题的关键15、a(a 4)2【解析】首先提取公因式a,进而利用完全平方公式分解因式得出即可【详解】 故答案为:【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.16、1或2【解析】先根据非负数的性质列式求出x、y的值,再分x的值是腰长与底边两种
19、情况讨论求解【详解】根据题意得,x-5=0,y-7=0,解得x=5,y=7,5是腰长时,三角形的三边分别为5、5、7,三角形的周长为15是底边时,三角形的三边分别为5、7、7,能组成三角形,5+7+7=2;所以,三角形的周长为:1或2;故答案为1或2【点睛】本题考查了等腰三角形的性质,绝对值与算术平方根的非负性,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断17、33.【解析】试题分析:设品尝孔明菜的朋友有x人,依题意得,5x36x3,解得x6,所以孔明菜有5x333袋.考点:一元一次方程的应用.18、6【解析】试
20、题分析:设所求正n边形边数为n,则120n=(n2)180,解得n=6;考点:多边形内角与外角三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)y=x2+4x+5,A(1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M(3,8),N(2,3)【解析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,m2+4m+5),则其关于原点的对称点Q(m,m24m5),再将Q坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK对称轴
21、x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】()设二次函数的解析式为y=a(x2)2+9,把C(0,5)代入得到a=1,y=(x2)2+9,即y=x2+4x+5,令y=0,得到:x24x5=0,解得x=1或5,A(1,0),B(5,0)()设点Q(m,m2+4m+5),则Q(m,m24m5)把点Q坐标代入y=x2+4x+5,得到:m24m5=m24m+5,m=或(舍弃),Q(,)()如图,作MK对称轴x=2于K当MK=OA,NK=OC=5时,四边形ACNM是平行四边形此时点M的横坐标为1,y=8,M(1,8),N(2,13),当MK=OA=1,KN=OC=5
22、时,四边形ACMN是平行四边形,此时M的横坐标为3,可得M(3,8),N(2,3)【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.20、(1)y=(x)2+;(,);(2)(,)或(,);(0,);【解析】1)把0(0,0),A(4,4v3)的坐标代入y=x2+bx+c,转化为解方程组即可.(2)先求出直线OA的解析式,点B坐标,抛物线的对称轴即可解决问题.(3)如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,首先证明四边形BOQC是菱形,设Q(m,),根据OQ=OB=5,可得方程,解方程即可解决问题.如图2中,由题意
23、点D在以B为圆心5为半径的OB上运动,当A,D、B共线时,线段AD最小,设OD与BQ交于点H.先求出D、H两点坐标,再求出直线BH的解析式即可解决问题.【详解】(1)把O(0,0),A(4,4)的坐标代入y=x2+bx+c,得,解得,抛物线的解析式为y=x2+5x=(x)2+所以抛物线的顶点坐标为(,);(2)由题意B(5,0),A(4,4),直线OA的解析式为y=x,AB=7,抛物线的对称轴x=,P(,)如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,QCOB,CQB=QBO=QBC,CQ=BC=OB=5,四边形BOQC是平行四边形,BO=BC,四边形BOQC是菱形,设Q(
24、m,),OQ=OB=5,m2+()2=52,m=,点Q坐标为(,)或(,);如图2中,由题意点D在以B为圆心5为半径的B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点HAB=7,BD=5,AD=2,D(,),OH=HD,H(,),直线BH的解析式为y=x+,当y=时,x=0,Q(0,)【点睛】本题二次函数与一次函数的关系、几何动态问题、最值问题、作辅助圆解决问题,难度较大,需积极思考,灵活应对21、(1)见解析;(1)70【解析】(1)根据全等三角形的判定即可判断AECBED;(1)由(1)可知:EC=ED,C=BDE,根据等腰三角形的性质即可知C的度数,从而可求出BDE的度数.
25、【详解】证明:(1)AE和BD相交于点O,AOD=BOE在AOD和BOE中,A=B,BEO=1又1=1,1=BEO,AEC=BED 在AEC和BED中, AECBED(ASA)(1)AECBED,EC=ED,C=BDE 在EDC中,EC=ED,1=40,C=EDC=70,BDE=C=70【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.22、(1)A型足球进了40个,B型足球进了60个;(2)当x=60时,y最小=4800元.【解析】(1)设A型足球x个,则B型足球(100-x)个,根据该店老板共花费了5200元列方程求解即可;(2)设进货款为y元,根据题
26、意列出函数关系式,根据B型号足球数量不少于A型号足球数量的求出x的取值范围,然后根据一次函数的性质求解即可.【详解】解:(1)设A型足球x个,则B型足球(100-x)个, 40x +60(100-x)=5200 ,解得:x=40 , 100-x=100-40=60个,答:A型足球进了40个,B型足球进了60个(2)设A型足球x个,则B型足球(100-x)个,100-x ,解得:x60 ,设进货款为y元,则y=40x+60(100-x)=-20x+6000 ,k=-20,y随x的增大而减小,当x=60时,y最小=4800元.【点睛】本题考查了一元一次方程的应用,一次函数的应用,仔细审题,找出解决
27、问题所需的数量关系是解答本题的关键.23、见解析【解析】先根据分式的混合运算顺序和运算法则化简原式,若原代数式的值为1,则=1,截至求得x的值,再根据分式有意义的条件即可作出判断【详解】原式=,若原代数式的值为1,则=1,解得:x=0,因为x=0时,原式没有意义,所以原代数式的值不能等于1【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键24、(1)D(2,2);(2);(3)【解析】(1)令x=0求出A的坐标,根据顶点坐标公式或配方法求出顶点B的坐标、对称轴直线,根据点A与点D关于对称轴对称,确定D点坐标.(2)根据点B、D的坐标用待定系数法求出直线BD的解析式,令y=0,即可求
28、得M点的坐标.(3)根据点A、B的坐标用待定系数法求出直线AB的解析式,求直线OD的解析式,进而求出交点N的坐标,得到ON的长.过A点作AEOD,可证AOE为等腰直角三角形,根据OA=2,可求得AE、OE的长,表示出EN的长.根据tanOMB=tanONA,得到比例式,代入数值即可求得a的值.【详解】(1)当x=0时,A点的坐标为(0,2)顶点B的坐标为:(1,2-a),对称轴为x= 1,点A与点D关于对称轴对称D点的坐标为:(2,2)(2)设直线BD的解析式为:y=kx+b把B(1,2-a)D(2,2)代入得: ,解得:直线BD的解析式为:y=ax+2-2a当y=0时,ax+2-2a=0,解
29、得:x=M点的坐标为:(3)由D(2,2)可得:直线OD解析式为:y=x设直线AB的解析式为y=mx+n,代入A(0,2)B(1,2-a)可得: 解得:直线AB的解析式为y= -ax+2联立成方程组: ,解得:N点的坐标为:()ON=()过A点作AEOD于E点,则AOE为等腰直角三角形.OA=2OE=AE=,EN=ON-OE=()-=)M,C(1,0), B(1,2-a)MC=,BE=2-aOMB=ONAtanOMB=tanONA,即解得:a=或抛物线开口向下,故a0, a=舍去,【点睛】本题是一道二次函数与一次函数及三角函数综合题,掌握并灵活应用二次函数与一次函数的图象与性质,以及构建直角三
30、角形借助点的坐标使用相等角的三角函数是解题的关键.25、(1)75;4;(2)CD=4【解析】(1)根据平行线的性质可得出ADB=OAC=75,结合BOD=COA可得出BODCOA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出ABD=75=ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BEAD交AC于点E,同(1)可得出AE=4,在RtAEB中,利用勾股定理可求出BE的长度,再在RtCAD中,利用勾股定理可求出DC的长,此题得解【详解】解:(1)BDAC,ADB=OAC=75BOD=COA,BODCOA,又AO=3,OD=AO=,AD=A
31、O+OD=4BAD=30,ADB=75,ABD=180-BAD-ADB=75=ADB,AB=AD=4(2)过点B作BEAD交AC于点E,如图所示ACAD,BEAD,DAC=BEA=90AOD=EOB,AODEOB,BO:OD=1:3,AO=3,EO=,AE=4ABC=ACB=75,BAC=30,AB=AC,AB=2BE在RtAEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,AB=AC=8,AD=1在RtCAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4【点睛】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度26、证明见解析【解析】分析:根据平行四边形的性质以及已知的条件得出EGD和FHB全等,从而得出DG=BH,从而说明AG和CH平行且相等,得出四边形AHCG为平行四边形,从而得出答案详解:证明:在ABCD中,又,又,四边形AGCH为平行四边形, 点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG为平行四边形27、【解析】试题分析:试题解析:原式=当x=时,原式=.考点:分式的化简求值