《福建省尤溪一中学文公分校2023年初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《福建省尤溪一中学文公分校2023年初中数学毕业考试模拟冲刺卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在边长为6的菱形中, ,以点为圆心,菱形的高为半径画弧,交于点,交于点,则图中阴影部分的面积是( )ABCD2四个有理数1,2,0,3,其中最小的是( )A1
2、 B2 C0 D33有一种球状细菌的直径用科学记数法表示为2.16103米,则这个直径是()A216000米B0.00216米C0.000216米D0.0000216米4每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( )A1.05105B0.105104C1.05105D1051075射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为 ,则四人中成绩最稳定的是( )A甲B乙C丙D丁6估计的运算结果应在哪个两个连续自然数之间()A2和1B3和2C4和3D5和47估算的值是在()A2
3、和3之间B3和4之间C4和5之间D5和6之间8函数的图像位于( )A第一象限B第二象限C第三象限D第四象限9某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=4x+440,要获得最大利润,该商品的售价应定为A60元 B70元 C80元 D90元10不等式组的解集在数轴上表示为( )ABCD二、填空题(共7小题,每小题3分,满分21分)11函数y的自变量x的取值范围是_12如图,已知正八边形ABCDEFGH内部ABE的面积为6cm1,则正八边形ABCDEFGH面积为_cm113如图,在ABC中,ABAC,AHBC,垂足为点H
4、,如果AHBC,那么sinBAC的值是_14如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_.15将一张长方形纸片折叠成如图所示的形状,则ABC=_16双曲线、在第一象限的图像如图,过y2上的任意一点A,作x轴的平行线交y1于B,交y轴于C,过A作x轴的垂线交y1于D,交x轴于E,连结BD、CE,则 17若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_三、解答题(共7小题,满分69分)18(10分)AB为O直径,C为O上的一点,过点C的切线与AB的延长线相交于点D,CACD(1)连接BC,求证:BCOB;(2)E是中点,连接CE,BE,若BE2,求CE的
5、长19(5分)路边路灯的灯柱垂直于地面,灯杆的长为2米,灯杆与灯柱成角,锥形灯罩的轴线与灯杆垂直,且灯罩轴线正好通过道路路面的中心线(在中心线上).已知点与点之间的距离为12米,求灯柱的高.(结果保留根号)20(8分)已知平行四边形尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:21(10分)综合与探究如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(4,y)点F是抛物线y=ax2+bx+3
6、上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;(2)设点F的横坐标为x(4x4),解决下列问题:当点G与点D重合时,求平移距离m的值;用含x的式子表示平移距离m,并求m的最大值;(3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD是否存在点F,使FDP与FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由22(10分)为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情
7、况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整)这次调查中,一共调查了_名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率23(12分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)DAB=90,求证:a2+b2=c2证明:连接DB,过点D作DFBC交B
8、C的延长线于点F,则DF=b-aS四边形ADCB= S四边形ADCB=化简得:a2+b2=c2请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中DAB=90,求证:a2+b2=c224(14分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元 (进价、售价均保持不变,利润销售收入进货成本)(1)求A,B两种型号的电风扇的销售单价(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台
9、?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】由菱形的性质得出AD=AB=6,ADC=120,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积,根据面积公式计算即可【详解】四边形ABCD是菱形,DAB=60,AD=AB=6,ADC=180-60=120,DF是菱形的高,DFAB,DF=ADsin60=6=3,阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积=63=18-9故选B【点睛】本题
10、考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键2、D【解析】解:1102,最小的是1故选D3、B【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】2.16103米0.00216米故选B【点睛】考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4、C【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法
11、不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定所以0.0000105=1.05105,故选C考点:科学记数法5、D【解析】根据方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案【详解】0.450.510.62,丁成绩最稳定,故选D【点睛】此题主要考查了方差,关键是掌握方差越小,稳定性越大6、C【解析】根据二次根式的性质,可化简得=3=2,然后根据二次根式的估算,由324可知2在4和3之间故选C点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再
12、二次根式的估算方法求解.7、C【解析】求出,推出45,即可得出答案【详解】,45,的值是在4和5之间故选:C【点睛】本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出,题目比较好,难度不大8、D【解析】根据反比例函数中,当,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案【详解】解:函数的图象位于第四象限故选:D【点睛】此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键9、C【解析】设销售该商品每月所获总利润为w,则w=(x50)(4x+440)=4x2+640x22000=4(x80)2+3600,当x=80时,w取得最大值
13、,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选C10、A【解析】分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.【详解】解不等式得,x1;解不等式得,x2;不等式组的解集为:x2,在数轴上表示为:故选A.【点睛】本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.二、填空题(共7小题,每小题3分,满分21分)11、x1【解析】根据分母不等于2列式计算即可得解【详解】解:根据题意得x+12,解得x1故答案为:x1【点睛】考查的知识点为:分式有意义,分母不为212、14【解析】取AE中点I,连接IB,则正八边形A
14、BCDEFGH是由8个与IDE全等的三角形构成【详解】解:取AE中点I,连接IB则正八边形ABCDEFGH是由8个与IAB全等的三角形构成I是AE的中点, = =3,则圆内接正八边形ABCDEFGH的面积为:83=14cm1故答案为14【点睛】本题考查正多边形的性质,解答此题的关键是作出辅助线构造出三角形13、 【解析】过点B作BDAC于D,设AH=BC=2x,根据等腰三角形三线合一的性质可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根据三角形的面积列方程求出BD,然后根据锐角的正弦=对边:斜边求解即可【详解】如图,过点B作BDAC于D,设AH=BC=2x,AB=AC,AHBC,BH
15、=CH=BC=x,根据勾股定理得,AC=x,SABC=BCAH=ACBD,即2x2x=xBD,解得BC=x,所以,sinBAC=故答案为14、2【解析】分析:由主视图得出长方体的长是6,宽是2,这个几何体的体积是16,设高为h,则62h=16,解得:h=1它的表面积是:212+262+162=215、73【解析】试题解析:CBD=34,CBE=180-CBD=146,ABC=ABE=CBE=7316、【解析】设A点的横坐标为a,把x=a代入得,则点A的坐标为(a,)ACy轴,AEx轴,C点坐标为(0,),B点的纵坐标为,E点坐标为(a,0),D点的横坐标为aB点、D点在上,当y=时,x=;当x
16、=a,y=B点坐标为(,),D点坐标为(a,)AB=a=,AC=a,AD=,AE=AB=AC,AD=AE又BAD=CAD,BADCAD17、2【解析】侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长依此列出方程即可【详解】设母线长为x,根据题意得2x2=25,解得x=1故答案为2【点睛】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大三、解答题(共7小题,满分69分)18、(2)见解析;(2)2+【解析】(2)连接OC,根据圆周角定理、切线的性质得到ACO=DCB,根据CA=CD得到CAD=D,证明COB=CBO,根据等角对等边证明;(2)连接AE,过点
17、B作BFCE于点F,根据勾股定理计算即可【详解】(2)证明:连接OC,AB为O直径,ACB90,CD为O切线OCD90,ACODCB90OCB,CACD,CADDCOBCBOOCBCOBBC;(2)连接AE,过点B作BFCE于点F,E是AB中点,AEBE2AB为O直径,AEB90ECBBAE45,CFBF2【点睛】本题考查的是切线的性质、圆周角定理、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键19、【解析】设灯柱BC的长为h米,过点A作AHCD于点H,过点B作BEAH于点E,构造出矩形BCHE,RtAEB,然后解直角三角形求解【详解】解:设灯柱的长为米,过点作于点过点做于点四边形为矩
18、形,又在中,又在中,解得,(米)灯柱的高为米.20、(1)见解析;(2)见解析.【解析】试题分析:(1)作BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出ABDC,ADBC,故1=2,3=1再由AF平分BAD得出1=3,故可得出2=1,据此可得出结论试题解析:(1)如图所示,AF即为所求;(2)四边形ABCD是平行四边形,ABDC,ADBC,1=2,3=1AF平分BAD,1=3,2=1,CE=CF考点:作图基本作图;平行四边形的性质.21、(3)(4,6);(3)-3;4;(2)F的坐标为(3,0)或(3,)【解析】(3)先将A(3,0),B(4,0),
19、代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E点坐标代入表达式求出y的值即可;(3)设直线BD的表达式为y=kx+b,将B(4,0),E(4,6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GFx轴,故可得F的纵坐标, 再将y=2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;(2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据FDP与FDG的面积比为3:3,故PD:DG=3:3已知FPHD,则FH
20、:HG=3:3再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.【详解】解:(3)将A(3,0),B(4,0),代入y=ax3+bx+2得:,解得:,抛物线的表达式为y=x3+x+2,把E(4,y)代入得:y=6,点E的坐标为(4,6)(3)设直线BD的表达式为y=kx+b,将B(4,0),E(4,6)代入得:,解得:,直线BD的表达式为y=x2把x=0代入y=x2得:y=2,D(0,2)当点G与点D重合时,G的坐标为(0,2)GFx轴,F的纵坐标为2将y=2代入抛物线的解析式得:x3+x+2=2,解得:x=+3或x=+34x4,点F的坐标为(+3,2)m=FG=3设点F
21、的坐标为(x,x3+x+2),则点G的坐标为(x+m,(x+m)2),x3+x+2=(x+m)2,化简得,m=x3+4,0,m有最大值,当x=0时,m的最大值为4(2)当点F在x轴的左侧时,如下图所示:FDP与FDG的面积比为3:3,PD:DG=3:3FPHD,FH:HG=3:3设F的坐标为(x,x3+x+2),则点G的坐标为(3x,x2),x3+x+2=x2,整理得:x36x36=0,解得:x=3或x=4(舍去),点F的坐标为(3,0)当点F在x轴的右侧时,如下图所示:FDP与FDG的面积比为3:3,PD:DG=3:3FPHD,FH:HG=3:3设F的坐标为(x,x3+x+2),则点G的坐标
22、为(3x, x2),x3+x+2=x2,整理得:x3+3x36=0,解得:x=3或x=3(舍去),点F的坐标为(3,)综上所述,点F的坐标为(3,0)或(3,)【点睛】本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.22、(1)200;(2)答案见解析;(3)【解析】(1)由题意得:这次调查中,一共调查的学生数为:4020%=200(名);(2)根据题意可求得B占的百分比为:1-20%-30%-15%=35%,C的人数为:20030%=60(名);则可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概
23、率公式即可求得答案【详解】解:(1)根据题意得:这次调查中,一共调查的学生数为:4020%=200(名);故答案为:200;(2)C组人数:200407030=60(名) B组百分比:70200100%=35% 如图 (3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;画树状图得:共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,一人是喜欢跳绳、一人是喜欢足球的学生的概率为:【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图用到的知识点为:概率=所求情况数与总情况数之比23、见解析.【解析】首先连结BD,过点B作DE边上的高BF,则B
24、F=b-a,表示出S五边形ACBED,两者相等,整理即可得证【详解】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,S五边形ACBED=SACB+SABE+SADE=ab+b1+ab,又S五边形ACBED=SACB+SABD+SBDE=ab+c1+a(b-a),ab+b1+ab=ab+c1+a(b-a),a1+b1=c1【点睛】此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键24、 (1) A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标【
25、解析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标【详解】(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台依题意,得解得答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30a)台依题意,得200a170(30a)5400,解得a10.答:A种型号的电风扇最多能采购10台(3)依题意,有(250200)a(210170)(30a)1400,解得a20.a10,在(2)的条件下超市不能实现利润为1400元的目标【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解