湖北省黄石十四中学2022-2023学年中考数学考试模拟冲刺卷含解析.doc

上传人:lil****205 文档编号:88308284 上传时间:2023-04-25 格式:DOC 页数:20 大小:1.01MB
返回 下载 相关 举报
湖北省黄石十四中学2022-2023学年中考数学考试模拟冲刺卷含解析.doc_第1页
第1页 / 共20页
湖北省黄石十四中学2022-2023学年中考数学考试模拟冲刺卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《湖北省黄石十四中学2022-2023学年中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《湖北省黄石十四中学2022-2023学年中考数学考试模拟冲刺卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为米,那么这两树在坡面上的距离为( )ABC5cosD2如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三

2、角形”下列各组数据中,能作为一个智慧三角形三边长的一组是()A1,2,3B1,1,C1,1,D1,2,3如果代数式有意义,则实数x的取值范围是( )Ax3Bx0Cx3且x0Dx34碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米0.000000001米,则0.5纳米用科学记数法表示为()A0.5109米B5108米C5109米D51010米5已知二次函数yax2+bx+c(a0)的图象如图所示,则下列结论: abc0; 2ab0; b24ac0; 9a+3b+c0; c+8a0.正确的结论有().A1个B2个C3个D4个6如

3、图,已知,为反比例函数图象上的两点,动点在轴正半轴上运动,当线段与线段之差达到最大时,点的坐标是( ) ABCD7下列现象,能说明“线动成面”的是()A天空划过一道流星B汽车雨刷在挡风玻璃上刷出的痕迹C抛出一块小石子,石子在空中飞行的路线D旋转一扇门,门在空中运动的痕迹8如图,在RtABC中,ACB=90,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则ACD的周长为()A13B17C18D259下列计算中,错误的是( )A;B;C;D10如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明AO

4、BAOB的依据是()ASASBSSSCAASDASA11的相反数是( )AB2CD12如图,四边形ABCD是菱形,对角线AC,BD交于点O,于点H,且DH与AC交于G,则OG长度为ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC若B=56,C=45,则游客中心A到观景长廊BC的距离AD的长约为_米(sin560.8,tan561.5)14如图,“人字梯”放在水平的地面上,当梯子的一边与地面所夹的锐角为时,两梯角之间的距离BC的长为周日亮亮帮助妈妈整理换季衣服,先使为,后又调整为,

5、则梯子顶端离地面的高度AD下降了_结果保留根号15如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,则折痕EF的长为_16点 C 在射线 AB上,若 AB=3,BC=2,则AC为_17已知点P在一次函数y=kx+b(k,b为常数,且k0,b0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上(1)k的值是 ;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CEx轴于点E,记S1为四边形CEOB的面积,S2为O

6、AB的面积,若=,则b的值是 18安全问题大于天,为加大宣传力度,提高学生的安全意识,乐陵某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:互相关心;互相提醒;不要相互嬉水;相互比潜水深度;选择水流湍急的水域;选择有人看护的游泳池小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知是的外接圆,圆心在的外部,求的半径.20(6分)如图是一副创意卡通圆规,图是其平面示意图,OA是支撑臂,OB是旋转臂使用时,以点A为支撑点,铅笔芯端点B可绕点A旋

7、转作出圆已知OAOB10cm.(1)当AOB18时,求所作圆的半径(结果精确到0.01cm);(2)保持AOB18不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin90.1564,cos90.9877,sin180.3090,cos180.9511,可使用科学计算器)21(6分)(1)2018+()122(8分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,

8、又知此次调查中捐款30元的学生一共16人孔明同学调查的这组学生共有_人;这组数据的众数是_元,中位数是_元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?23(8分)如图,直线y=x与双曲线y=(k0,x0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k0,x0)交于点B(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;(2)若OA=3BC,求k的值24(10分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(3,0),点C的坐标为(0,3),对称轴为直线x1(1)求抛物线的解析式;(2)若点P在抛物线上,且

9、SPOC4SBOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值25(10分)如图,某高速公路建设中需要确定隧道AB的长度已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60和45求隧道AB的长(1.73)26(12分)(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0t10,B:10t20,C:20t30,D:t30),根据图中信息,解答下列问题:(1)这项被调查的总人数是多少人?(2)试求表示A组的扇形统计图的圆心角的度数,补全

10、条形统计图;(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率27(12分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m当起重臂AC长度为9m,张角HAC为118时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin280.47,cos280.88,tan280.53)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】利用所给的角的余弦值求解即可【详解】BC=5米,C

11、BA=,AB=故选D【点睛】本题主要考查学生对坡度、坡角的理解及运用2、D【解析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120,底角30的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90,60,30的直角三角形,依此即可作出判定【详解】1+2=3,不能构成三角形,故选项错误;B、12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120,底角30的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90,60,30的直角三角形,其中

12、9030=3,符合“智慧三角形”的定义,故选项正确故选D3、C【解析】根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可【详解】由题意得,x+30,x0,解得x3且x0,故选C.【点睛】本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.4、D【解析】解:0.5纳米=0.50.000 000 001米=0.000 000 000 5米=51010米故选D点睛:在负指数科学计数法 中,其中 ,n等于第一个非0数字前所有0的个数(包括下数点前面的0).5、C【解析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x

13、轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线开口向下,得:a0;抛物线的对称轴为x=-=1,则b=-2a,2a+b=0,b=-2a,故b0;抛物线交y轴于正半轴,得:c0.abc0, 正确;2a+b=0,正确;由图知:抛物线与x轴有两个不同的交点,则=b2-4ac0,故错误;由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故错误;观察图象得当x=-2时,y0,即4a-2b+c0b=-2a,4a+4a+c0即8a+c0,故正确.正确的结论有,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a与b的关系

14、,以及二次函数与方程之间的转换,根的判别式的熟练运用6、D【解析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在ABP中,|AP-BP|AB,延长AB交x轴于P,当P在P点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可【详解】把,代入反比例函数 ,得:,在中,由三角形的三边关系定理得:,延长交轴于,当在点时,即此时线段与线段之差达到最大,设直线的解析式是,把,的坐标代入得:,解得:,直线的解析式是,当时,即,故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数

15、的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度7、B【解析】本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;【详解】解:A、天空划过一道流星说明“点动成线”,故本选项错误.B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,故本选项正确.C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,故本选项错误.D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,故本选项错误.故选B.【点睛】本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体.8、C【解析】在RtABC中,ACB=90,BC=12,AC=5,根据勾股

16、定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在RtABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=AB,所以ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.9、B【解析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可详解:A,故A正确; B,故B错误; C故C正确; D,故D正确; 故选B点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错10、B【解析】由作法易得OD=OD,OC=OC,CD=CD,根据SSS可得到三角形全等【详解】由作法易得ODOD,OCOC

17、,CDCD,依据SSS可判定CODCOD,故选:B【点睛】本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理11、B【解析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以2的相反数是2,故选B【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .12、B【解析】试题解析:在菱形中,所以,在中,因为,所以,则,在中,由勾股定理得,由可得,即,所以故选B.二、填空题:(本大题共6个小题,每小题4分,共24分)13、60【解析】根据题意和图形可以分别表示出AD和CD的长,从而可以求得AD的长,本题得以解决【详解】B=56,C=45,ADB=ADC=90,BC=BD+CD=1

18、00米, BD=,CD=,+=100, 解得,AD60考点:解直角三角形的应用14、【解析】根据题意画出图形,进而利用锐角三角函数关系得出答案【详解】解:如图1所示:过点A作于点D,由题意可得:,则是等边三角形,故BC,则,如图2所示:过点A作于点E,由题意可得:,则是等腰直角三角形,则,故梯子顶端离地面的高度AD下降了故答案为:【点睛】此题主要考查了解直角三角形的应用,正确画出图形利用锐角三角三角函数关系分析是解题关键15、【解析】首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质

19、求得EM的长,则问题得解【详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,四边形ABCD是矩形,设,则,在中,即,由折叠的性质可得:,故答案为【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用16、2或2【解析】解:本题有两种情形:(2)当点C在线段AB上时,如图,AB=3,BC=2,AC=ABBC=3-2=2;(2)当点C在线段AB的延长线上时,如图,AB=3,BC=2,AC=AB+BC=3+2=2 故答案为2或2点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨

20、论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解17、(1)-2;(2)【解析】(1)设点P的坐标为(m,n),则点Q的坐标为(m1,n+2),依题意得:,解得:k=2.故答案为2.(2)BOx轴,CEx轴,BOCE,AOBAEC.又, 令一次函数y=2x+b中x=0,则y=b,BO=b;令一次函数y=2x+b中y=0,则0=2x+b,解得:x=,即AO=.AOBAEC,且,,AE=,AO=,CE=BO=b,OE=AEAO=.OECE=|4|=4,即=4,解得:b=,或b= (舍去).故答案为.18、【解析】根据事件的描述可得到描述正确的有,即可得到答案.【详解】共有6张纸条,

21、其中正确的有互相关心;互相提醒;不要相互嬉水;选择有人看护的游泳池,共4张,抽到内容描述正确的纸条的概率是, 故答案为:【点睛】此题考查简单事件的概率的计算,正确掌握事件的概率计算公式是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、4【解析】已知ABC是等腰三角形,根据等腰三角形的性质,作于点,则直线为的中垂线,直线过点,在RtOBH中,用半径表示出OH的长,即可用勾股定理求得半径的长【详解】作于点,则直线为的中垂线,直线过点,即,.【点睛】考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.20、 (1)3.13cm(2)铅笔芯折断部分的长

22、度约是0.98cm【解析】试题分析:(1)根据题意作辅助线OCAB于点C,根据OA=OB=10cm,OCB=90,AOB=18,可以求得BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决试题解析:(1)作OCAB于点C,如右图2所示,由题意可得,OA=OB=10cm,OCB=90,AOB=18,BOC=9,AB=2BC=2OBsin92100.15643.13cm,即所作圆的半径约为3.13cm;(2)作ADOB于点D,作AE=AB,如下图3所示,保持AOB=18不变,在旋转

23、臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,折断的部分为BE,AOB=18,OA=OB,ODA=90,OAB=81,OAD=72,BAD=9,BE=2BD=2ABsin923.130.15640.98cm,即铅笔芯折断部分的长度是0.98cm考点:解直角三角形的应用;探究型21、-1.【解析】直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案【详解】原式=1+13=1【点睛】本题主要考查了实数运算,正确化简各数是解题的关键22、(1)60;(2)20,20;(3)38000【解析】(1)利用从左到右各长方形高度之比为3:4:5:10:8,可设捐5元、10元

24、、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则根据题意得8x=1,解得x=2,然后计算3x+4x+5x+10x+8x即可;(2)先确定各组的人数,然后根据中位数和众数的定义求解;(3)先计算出样本的加权平均数,然后利用样本平均数估计总体,用2000乘以样本平均数即可【详解】(1)设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则8x=1,解得:x=2,3x+4x+5x+10x+8x=30x=302=60(人);(2)捐5元、10元、15元、20元和30元的人数分别为6,8,10,20,120出现次数最多,众数为20元;共有60个数据,

25、第30个和第31个数据落在第四组内,中位数为20元;(3)2000=38000(元),估算全校学生共捐款38000元【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来也考查了样本估计总体、中位数与众数23、(1)k=b2+4b;(2)【解析】试题分析:(1)分别求出点B的坐标,即可解答(2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作ADx轴,BEx轴,CFBE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x试题解析:(1)将直线y=

26、向上平移4个单位长度后,与y轴交于点C,平移后直线的解析式为y=+4,点B在直线y=+4上,B(b,b+4),点B在双曲线y=上,B(b,),令b+4=得(2)分别过点A、B作ADx轴,BEx轴,CFBE于点F,设A(3x,x),OA=3BC,BCOA,CFx轴,CF=OD,点A、B在双曲线y=上,3bb=,解得b=1,k=311=考点:反比例函数综合题24、(1)yx2+2x3;(2)点P的坐标为(2,21)或(2,5);(3)【解析】(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a3),则点P到OC的距离为|

27、a|然后依据SPOC2SBOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x3),则点Q的坐标为(x,x3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可【详解】解:(1)抛物线与x轴的交点A(3,0),对称轴为直线x1,抛物线与x轴的交点B的坐标为(1,0),设抛物线解析式为ya(x+3)(x1),将点C(0,3)代入,得:3a3,解得a1,则抛物线解析式为y(x+3)(x1)x2+2x3;(2)设点P的坐标为(a,a2+2a3),则点P到OC的距离为|a|SPOC2SBOC,OC|a|2OCOB,

28、即3|a|231,解得a2当a2时,点P的坐标为(2,21);当a2时,点P的坐标为(2,5)点P的坐标为(2,21)或(2,5)(3)如图所示:设AC的解析式为ykx3,将点A的坐标代入得:3k30,解得k1,直线AC的解析式为yx3设点D的坐标为(x,x2+2x3),则点Q的坐标为(x,x3)QDx3( x2+2x3)x3x22x+3x23x(x2+3x+)(x+)2+, 当x时,QD有最大值,QD的最大值为【点睛】本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用25、简答:OA,OB=OC=1500,AB=(m).答:隧道AB的长约为635m.【解析】试题分析:首先

29、过点C作COAB,根据RtAOC求出OA的长度,根据RtCBO求出OB的长度,然后进行计算.试题解析:如图,过点C作CO直线AB,垂足为O,则CO=1500m BCOB DCA=CAO=60,DCB=CBO=45在RtCAO 中,OA=1500=500m在RtCBO 中,OB=1500tan45=1500mAB=15005001500865=635(m)答:隧道AB的长约为635m考点:锐角三角函数的应用.26、(1)50;(2)108;(3)【解析】分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,

30、再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案本题解析:解:(1)调查的总人数是:1938%50(人)C组的人数有501519412(人),补全条形图如图所示(2)画树状图如下共有12种等可能的结果,恰好选中甲的结果有6种,P(恰好选中甲)点睛:本题考查了列表法与树状图、条形统计图的综合运用熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键27、操作平台C离地面的高度为7.6m【解析】分析:作CEBD于F,AFCE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,HAF=90,再计算出CAF=28,则在RtACF中利用正弦可计算出CF,然后计算CF+EF即可详解:作CEBD于F,AFCE于F,如图2,易得四边形AHEF为矩形,EF=AH=3.4m,HAF=90,CAF=CAH-HAF=118-90=28,在RtACF中,sinCAF=,CF=9sin28=90.47=4.23,CE=CF+EF=4.23+3.47.6(m),答:操作平台C离地面的高度为7.6m点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁