甘肃省榆中学县达标名校2022-2023学年中考试题猜想数学试卷含解析.doc

上传人:lil****205 文档编号:88309186 上传时间:2023-04-25 格式:DOC 页数:19 大小:908KB
返回 下载 相关 举报
甘肃省榆中学县达标名校2022-2023学年中考试题猜想数学试卷含解析.doc_第1页
第1页 / 共19页
甘肃省榆中学县达标名校2022-2023学年中考试题猜想数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《甘肃省榆中学县达标名校2022-2023学年中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《甘肃省榆中学县达标名校2022-2023学年中考试题猜想数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A23B75C77D1392下列各式中,互为相反数的是( )A和B和C和D和3有下列四种说法:半径确定了,圆就

2、确定了;直径是弦;弦是直径;半圆是弧,但弧不一定是半圆其中,错误的说法有()A1种B2种C3种D4种4在同一直角坐标系中,函数y=kx-k与(k0)的图象大致是 ( )ABCD5如图,点O在第一象限,O与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O的坐标是()A(6,4)B(4,6)C(5,4)D(4,5)6已知关于x的不等式组 至少有两个整数解,且存在以3,a,7为边的三角形,则a的整数解有()A4个B5个C6个D7个7如图,在ABC中,C=90,B=30,AD是ABC的角平分线,DEAB,垂足为点E,DE=1,则BC= ()AB2C3D+28已知关于x的方程恰有一个实根,

3、则满足条件的实数a的值的个数为()A1B2C3D49如图,抛物线y=ax2+bx+c(a0)过点(1,0)和点(0,2),且顶点在第三象限,设P=ab+c,则P的取值范围是( )A4P0B4P2C2P0D1P010如图,等边ABC内接于O,已知O的半径为2,则图中的阴影部分面积为( )A B C D二、填空题(本大题共6个小题,每小题3分,共18分)11已知是一元二次方程的一个根,则方程的另一个根是_12如图,ABC中,DE垂直平分AC交AB于E,A=30,ACB=80,则BCE=_ 13如图,点C在以AB为直径的半圆上,AB8,CBA30,点D在线段AB上运动,点E与点D关于AC对称,DFD

4、E于点D,并交EC的延长线于点F下列结论:CECF;线段EF的最小值为;当AD2时,EF与半圆相切;若点F恰好落在BC上,则AD;当点D从点A运动到点B时,线段EF扫过的面积是其中正确结论的序号是 14如图,在扇形AOB中,AOB=90,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_15我国古代数学著作九章算术卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱问有多少人,物品的价格是多少?设有人,则可

5、列方程为_16袋中装有红、绿各一个小球,随机摸出1个小球后放回,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率是_三、解答题(共8题,共72分)17(8分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A非常了解;B比较了解;C基本了解;D不了解根据调查统计结果,绘制了不完整的三种统计图表对雾霾了解程度的统计表:对雾霾的了解程度百分比A非常了解5%B比较了解mC基本了解45%D不了解n请结合统计图表,回答下列问题(1)本次参与调查的学生共有 人,m= ,n= ;(2)图2所示的扇形统

6、计图中D部分扇形所对应的圆心角是 度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球若摸出的两个球上的数字和为奇数,则小明去;否则小刚去请用树状图或列表法说明这个游戏规则是否公平18(8分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且,CD=400米,.求道

7、路AB段的长;(精确到1米)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:,)19(8分)已知:如图,AB为O的直径,C,D是O直径AB异侧的两点,AC=DC,过点C与O相切的直线CF交弦DB的延长线于点E(1)试判断直线DE与CF的位置关系,并说明理由;(2)若A=30,AB=4,求的长20(8分)如图,在平面直角坐标系中,直线y1=2x2与双曲线y2=交于A、C两点,ABOA交x轴于点B,且OA=AB求双曲线的解析式;求点C的坐标,并直接写出y1y2时x的取值范围21(8分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可

8、随机选择其中的一个通过(1)三辆汽车经过此收费站时,都选择A通道通过的概率是 ;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率22(10分)某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?23(12分)如图,已知ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D连DE并延长交BC于F, (1)判断ABC的形状,并证明你的结论;(2)如图1,若BE=CE=,求A的面积;(3

9、)如图2,若tanCEF=,求cosC的值.24先化简,然后从x的范围内选取一个合适的整数作为x的值代入求值参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,26,由此可得a,b【详解】上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,b=26=1上边的数与左边的数的和正好等于右边的数,a=11+1=2故选B【点睛】本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键2、A【解析】根据乘方的法则进行计算,然后根据只有符号不同的

10、两个数互为相反数,可得答案【详解】解:A. =9,=-9,故和互为相反数,故正确;B. =9,=9,故和不是互为相反数,故错误;C. =-8,=-8,故和不是互为相反数,故错误;D. =8,=8故和不是互为相反数,故错误.故选A.【点睛】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则3、B【解析】根据弦的定义、弧的定义、以及确定圆的条件即可解决【详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点

11、把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确其中错误说法的是两个故选B【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆4、D【解析】根据k值的正负性分别判断一次函数y=kx-k与反比例函数(k0)所经过象限,即可得出答案.【详解】解:有两种情况,当k0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数(k0)的图象经过一、三象限;当k0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数(k0)的图象经过二、四象限;根据选项可知,D选项满足条件

12、.故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.5、D【解析】过O作OCAB于点C,过O作ODx轴于点D,由切线的性质可求得OD的长,则可得OB的长,由垂径定理可求得CB的长,在RtOBC中,由勾股定理可求得OC的长,从而可求得O点坐标【详解】如图,过O作OCAB于点C,过O作ODx轴于点D,连接OB,O为圆心,AC=BC,A(0,2),B(0,8),AB=82=6,AC=BC=3,OC=83=5,O与x轴相切,OD=OB=OC=5,在RtOBC中,由勾股定理可得OC=4,P点坐标为(4,5),故选:D.【点睛】本题考查了切线的性质,坐标与图形性

13、质,解题的关键是掌握切线的性质和坐标计算.6、A【解析】依据不等式组至少有两个整数解,即可得到a5,再根据存在以3,a,7为边的三角形,可得4a10,进而得出a的取值范围是5a10,即可得到a的整数解有4个【详解】解:解不等式,可得xa,解不等式,可得x4,不等式组至少有两个整数解,a5,又存在以3,a,7为边的三角形,4a10,a的取值范围是5a10,a的整数解有4个,故选:A【点睛】此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了7、C【解析】试题分析:根据角平分线的性质可得CD=DE=1,根

14、据RtADE可得AD=2DE=2,根据题意可得ADB为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1考点:角平分线的性质和中垂线的性质8、C【解析】先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1由于原方程只有一个实数根,因此,方程的根有两种情况:(1)方程有两个相等的实数根,此二等根使x(x-2)1;(2)方程有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)1针对每一种情况,分别求出a的值及对应的原方程的根【详解】去分母,将原方程两边同乘x(x2),整理得2x23x+(3a)=1方程的根的情况有两种:(1)方程有两个相

15、等的实数根,即=932(3a)=1解得a=当a=时,解方程2x23x+(+3)=1,得x1=x2=(2)方程有两个不等的实数根,而其中一根使原方程分母为零,即方程有一个根为1或2(i)当x=1时,代入式得3a=1,即a=3当a=3时,解方程2x23x=1,x(2x3)=1,x1=1或x2=1.4而x1=1是增根,即这时方程的另一个根是x=1.4它不使分母为零,确是原方程的唯一根(ii)当x=2时,代入式,得2323+(3a)=1,即a=5当a=5时,解方程2x23x2=1,x1=2,x2= x1是增根,故x=为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个

16、故选C【点睛】考查了分式方程的解法及增根问题由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键9、A【解析】解:二次函数的图象开口向上,a1对称轴在y轴的左边,1b1图象与y轴的交点坐标是(1,2),过(1,1)点,代入得:a+b2=1a=2b,b=2ay=ax2+(2a)x2把x=1代入得:y=a(2a)2=2a3,b1,b=2a1a2a1,1a212a332a31,即3P1故选A【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键10、A【解析】解:连接OB、OC

17、,连接AO并延长交BC于H,则AHBCABC是等边三角形,BH=AB=,OH=1,OBC的面积= BCOH=,则OBA的面积=OAC的面积=OBC的面积=,由圆周角定理得,BOC=120,图中的阴影部分面积=故选A点睛:本题考查的是三角形的外接圆与外心、扇形面积的计算,掌握等边三角形的性质、扇形面积公式是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将2-代入计算即可【详解】设方程的另一根为x1,又x=2-,由根与系数关系,得x1+2-=4,解得x1=2+故答案为:【点睛】解决

18、此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解12、1【解析】根据ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出ACE=A=30,再根据ACB=80即可解答【详解】DE垂直平分AC,A=30,AE=CE,ACE=A=30,ACB=80,BCE=80-30=1故答案为:113、.【解析】试题分析:连接CD,如图1所示,点E与点D关于AC对称,CE=CD,E=CDE,DFDE,EDF=90,E+F=90,CDE+CDF=90,F=CDF,CD=CF,CE=CD=CF,结论“CE=CF”正确;当CDAB时,如图2所示,AB是半圆的直径,A

19、CB=90,AB=8,CBA=30,CAB=60,AC=4,BC=CDAB,CBA=30,CD=BC=根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为CE=CD=CF,EF=2CD线段EF的最小值为结论“线段EF的最小值为”错误;当AD=2时,连接OC,如图3所示,OA=OC,CAB=60,OAC是等边三角形,CA=CO,ACO=60,AO=4,AD=2,DO=2,AD=DO,ACD=OCD=30,点E与点D关于AC对称,ECA=DCA,ECA=30,ECO=90,OCEF,EF经过半径OC的外端,且OCEF,EF与半圆相切,结论“EF与半圆相切”正确;当点F恰好落

20、在上时,连接FB、AF,如图4所示,点E与点D关于AC对称,EDAC,AGD=90,AGD=ACB,EDBC,FHCFDE,FH:FD=FC:FE,FC=EF,FH=FD,FH=DH,DEBC,FHC=FDE=90,BF=BD,FBH=DBH=30,FBD=60,AB是半圆的直径,AFB=90,FAB=30,FB=AB=4,DB=4,AD=ABDB=4,结论“AD=”错误;点D与点E关于AC对称,点D与点F关于BC对称,当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称,EF扫过的图形就是图5中阴影部分,S阴影=2SABC=2ACBC=ACBC

21、=4=,EF扫过的面积为,结论“EF扫过的面积为”正确故答案为考点:1圆的综合题;2等边三角形的判定与性质;3切线的判定;4相似三角形的判定与性质14、41【解析】分析:连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解详解:连接OC在扇形AOB中AOB=90,正方形CDEF的顶点C是的中点,COD=45,OC=CD=4,阴影部分的面积=扇形BOC的面积-三角形ODC的面积=4-1故答案是:4-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度15、【解析】根据每人出8钱,则剩余3钱;如果每人出

22、7钱,则差4钱,可以列出相应的方程,本题得以解决【详解】解:由题意可设有人,列出方程: 故答案为【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程16、【解析】解:列表如下:所有等可能的情况有4种,所以第一次摸到红球,第二次摸到绿球的概率=故答案为三、解答题(共8题,共72分)17、解:(1)400;15%;35%(2)1(3)D等级的人数为:40035%=140,补全条形统计图如图所示:(4)列树状图得:从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,小明参加的概率为:P(数字之和为奇数);小刚参加的概率为:P(数字之和为偶数)P(数字之和

23、为奇数)P(数字之和为偶数),游戏规则不公平【解析】(1)根据“基本了解”的人数以及所占比例,可求得总人数:18045%=400人在根据频数、百分比之间的关系,可得m,n的值:(2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360的比可得出统计图中D部分扇形所对应的圆心角:36035%=1(3)根据D等级的人数为:40035%=140,据此补全条形统计图(4)用树状图或列表列举出所有可能,分别求出小明和小刚参加的概率,若概率相等,游戏规则公平;反之概率不相等,游戏规则不公平18、 (1)AB1395 米;(2)没有超速【解析】(1)先根据tanADC2求出AC,

24、再根据ABC35结合正弦值求解即可(2)根据速度的计算公式求解即可.【详解】解:(1)ACBC,C90,tanADC2,CD400,AC800,在RtABC中,ABC35,AC800,AB1395 米;(2)AB1395,该车的速度55.8km/h60千米/时,故没有超速【点睛】此题重点考察学生对三角函数值的实际应用,熟练掌握三角函数值的实际应用是解题的关键.19、 (1)见解析;(2).【解析】(1)先证明OACODC,得出1=2,则2=4,故OCDE,即可证得DECF;(2)根据OA=OC得到2=3=30,故COD=120,再根据弧长公式计算即可.【详解】解:(1)DECF理由如下:CF为

25、切线,OCCF,CA=CD,OA=OD,OC=OC,OACODC,1=2,而A=4,2=4,OCDE,DECF;(2)OA=OC,1=A=30,2=3=30,COD=120,【点睛】本题考查了全等三角形的判定与性质与弧长的计算,解题的关键是熟练的掌握全等三角形的判定与性质与弧长的公式.20、(1);(1)C(1,4),x的取值范围是x1或0x1【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论【详解】(1)点A在直线y1=1x1上,

26、设A(x,1x1),过A作ACOB于C,ABOA,且OA=AB,OC=BC,AC=OB=OC,x=1x1,x=1,A(1,1),k=11=4,;(1),解得:,C(1,4),由图象得:y1y1时x的取值范围是x1或0x1【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大21、(1);(2)【解析】(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可【详解】解:(

27、1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,所以都选择A通道通过的概率为,故答案为:;(2)共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,至少有两辆汽车选择B通道通过的概率为【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键22、每件衬衫应降价1元.【解析】利用衬衣平均每天售出的件数每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x元.根据题意,得 (40-x)(1+2x)=110,整理,得x2-30x+10=0,解得x1=10,x2=1“扩大销售量,减少库

28、存”,x1=10应舍去,x=1.答:每件衬衫应降价1元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数每件盈利=每天销售的利润是解题关键.23、 (1) ABC为直角三角形,证明见解析;(2)12;(3).【解析】(1)由,得CEFCBE,CBE=CEF,由BD为直径,得ADE+ABE=90,即可得DBC=90故ABC为直角三角形.(2)设EBC=ECB=x,根据等腰三角形的性质与直角三角形的性质易得 x=30,则ABE=60故AB=BE=,则可求出求A的面积;(3)由(1)知D=CFE=CBE,故tanCBE=,设EF=a,BE=2a,利用勾股定理求出 BD=

29、2BF=,得AD=AB=,DE=2BE=4a,过F作FKBD交CE于K,利用平行线分线段成比例得,求得 , 即可求出tanC 再求出cosC即可.【详解】解:,CEFCBE,CBE=CEF,AE=AD,ADE=AED=FEC=CBE,BD为直径,ADE+ABE=90,CBE+ABE=90,DBC=90ABC为直角三角形.(2)BE=CE设EBC=ECB=x,BDE=EBC=x,AE=ADAED=ADE=x,CEF=AED=xBFE=2x在BDF中由内角和可知:3x=90x=30ABE=60AB=BE=(3)由(1)知:D=CFE=CBE,tanCBE=,设EF=a,BE=2a,BF=,BD=2BF=,AD=AB=,,DE=2BE=4a,过F作FKBD交CE于K,, , tanC cosC.【点睛】此题主要考查圆内的三角形综合问题,解题的关键是熟知圆的切线定理,等腰三角形的性质,及相似三角形的性质.24、 【解析】根据分式的减法和除法可以化简题目中的式子,然后从x的范围内选取一个使得原分式有意义的整数作为x的值代入即可解答本题【详解】解:(x+1)=,当x=2时,原式= 【点睛】本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁