《甘肃省定西市市级名校2022-2023学年中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《甘肃省定西市市级名校2022-2023学年中考数学考前最后一卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1如图,经过测量,C地在A地北偏东46方向上,同时C地在B地北偏西63方向上,则C的度数为()A99B109C119D1292二次函数yax2+bx+c(a0)和正比例函数yx的图象如图所示,则方程ax2+(b+ )x+c0(a0)的两根之和()A大于0B等于0C小于0D不能确定3下列各数中负数是()A(2) B|2| C(2)2 D(2)34一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()ABCD5使用家用燃气灶烧开同一壶水所
3、需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )ABCD6一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:abc4ac;4a+2b+c0;2a+b=0.其中正确的结论有:A4个B3个C2个D1个7单项式2a3b的次数是()A2B3C4D58甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()ABCD9如图,已知函数与的图象在第二象限交于点,点在的图象上,且点B
4、在以O点为圆心,OA为半径的上,则k的值为ABCD10如图,中,E是BC的中点,设,那么向量用向量表示为( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11使有意义的的取值范围是_12如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sinEAB的值为 13如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,P与x轴交于O,A两点,点A的坐标为(6,0),P的半径为,则点P的坐标为_.14方程=1的解是_15计算3结果等于_16已知二次函数的图象开口向上,且经过原点,试写出一个符合上述条件的二次函数的解析式:_(
5、只需写出一个)三、解答题(共8题,共72分)17(8分)如图,在ABC中,BC12,tanA,B30;求AC和AB的长18(8分)如图,抛物线交X轴于A、B两点,交Y轴于点C ,(1)求抛物线的解析式;(2)平面内是否存在一点P,使以A,B,C,P为顶点的四边形为平行四边形,若存在直接写出P的坐标,若不存在请说明理由。19(8分)如图,点A的坐标为(4,0),点B的坐标为(0,2),把点A绕点B顺时针旋转90得到的点C恰好在抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:(1)直接写出AB所在直线的解析式、点C的坐标、a的值;(2)
6、连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;(3)是否存在这样的点P,使得QPO=OBC,若不存在,请说明理由;若存在,请你直接写出此时P点的坐标20(8分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有
7、多少名?21(8分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(4,6)、(1,4);请在图中的网格平面内建立平面直角坐标系;请画出ABC关于x轴对称的A1B1C1;请在y轴上求作一点P,使PB1C的周长最小,并直接写出点P的坐标.22(10分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_人;扇形统计图中,“电视”所对应的圆心角的度数是_;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网
8、”作为“获取新闻的最主要途径”的总人数.23(12分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表: 组别身高Ax160B160x165C165x170D170x175Ex175根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在 组,中位数在 组;(2)样本中,女生身高在E组的有 人,E组所在扇形的圆心角度数为 ;(3)已知该校共有男生600人,女生480人,请估让身高在165x175之间的学生约有多少人?24在数学课上,老师提出如下问题:小楠同学的作法如下:老师说:“小楠的作法正确”请回答:小楠的
9、作图依据是_参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】方向角是从正北或正南方向到目标方向所形成的小于90的角,根据平行线的性质求得ACF与BCF的度数,ACF与BCF的和即为C的度数【详解】解:由题意作图如下DAC=46,CBE=63,由平行线的性质可得ACF=DAC=46,BCF=CBE=63,ACB=ACF+BCF=46+63=109,故选B【点睛】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键2、C【解析】设的两根为x1,x2,由二次函数的图象可知,;设方程的两根为m,n,再根据根与系数的关系即可得出结论【详解】解:设的两根为x1
10、,x2,由二次函数的图象可知, 设方程的两根为m,n,则 .故选C【点睛】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键3、B【解析】首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可【详解】A、-(-2)=2,是正数;B、-|-2|=-2,是负数;C、(-2)2=4,是正数;D、-(-2)3=8,是正数故选B【点睛】此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键4、B【解析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】若第一次摸到的是白球,则有第一次摸
11、到白球的概率为,第二次,摸到白球的概率为,则有;若第一次摸到的球是红色的,则有第一次摸到红球的概率为,第二次摸到白球的概率为1,则有,则两次摸到的球的颜色不同的概率为.【点睛】掌握分类讨论的方法是本题解题的关键.5、C【解析】根据已知三点和近似满足函数关系y=ax2+bx+c(a0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41旋钮的旋转角度在36和54之间,约为41时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称
12、性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点6、B【解析】试题解析:二次函数的图象的开口向下,a0,二次函数图象的对称轴是直线x=1, 2a+b=0,b0abc04a+2b+c0,故错误;二次函数图象的对称轴是直线x=1,2a+b=0,故正确综上所述,正确的结论有3个.故选B.7、C【解析】分析:根据单项式的性质即可求出答案详解:该单项式的次数为:3+1=4故选C点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型8、D【解析】试题分析:A是轴对称图形,故本选项错误;B是轴对称图形,故本选项错误;C是轴对称图形
13、,故本选项错误;D不是轴对称图形,故本选项正确故选D考点:轴对称图形9、A【解析】由题意,因为与反比例函数都是关于直线对称,推出A与B关于直线对称,推出,可得,求出m即可解决问题;【详解】函数与的图象在第二象限交于点,点与反比例函数都是关于直线对称,与B关于直线对称,点故选:A【点睛】本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A,B关于直线对称10、A【解析】根据,只要求出即可解决问题.【详解】解:四边形ABCD是平行四边形,故选:A.【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则
14、,属于中考常考题型.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据二次根式的被开方数为非负数求解即可.【详解】由题意可得:,解得:.所以答案为.【点睛】本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.12、【解析】试题分析:设正方形的边长为y,EC=x,由题意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y0,化简得y=4x,sinEAB=考点:1相切两圆的性质;2勾股定理;3锐角三角函数的定义13、(3,2)【解析】过点P作PDx轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案【详解】过点P作PDx
15、轴于点D,连接OP, A(6,0),PDOA, OD=OA=3,在RtOPD中 OP= OD=3, PD=2 P(3,2) . 故答案为(3,2)【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键14、x=3【解析】去分母得:x1=2,解得:x=3,经检验x=3是分式方程的解,故答案为3.【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解15、1【解析】根据二次根式的乘法法则进行计算即可.【详解】 故答案为:1【点睛】考查二次根式的乘法,
16、掌握二次根式乘法的运算法则是解题的关键.16、y=x2等【解析】分析:根据二次函数的图象开口向上知道a1,又二次函数的图象过原点,可以得到c=1,所以解析式满足a1,c=1即可详解:二次函数的图象开口向上,a1二次函数的图象过原点,c=1 故解析式满足a1,c=1即可,如y=x2 故答案为y=x2(答案不唯一)点睛:本题是开放性试题,考查了二次函数的性质,二次函数图象上点的坐标特征,对考查学生所学函数的深入理解、掌握程度具有积极的意义,但此题若想答对需要满足所有条件,如果学生没有注意某一个条件就容易出错本题的结论是不唯一的,其解答思路渗透了数形结合的数学思想三、解答题(共8题,共72分)17、
17、8+6【解析】如图作CHAB于H在RtBHC求出CH、BH,在RtACH中求出AH、AC即可解决问题;【详解】解:如图作CHAB于H在RtBCH中,BC12,B30,CHBC6,BH6,在RtACH中,tanA,AH8,AC10,【点睛】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型18、(1);(2) (3,-4) 或(5,4)或(-5,4)【解析】(1)设|OA|=1,确定A,B,C三点坐标,然后用待定系数法即可完成;(2)先画出存在的点,然后通过平移和计算确定坐标;【详解】解:(1)设|OA|=1,则A(-1,0),B(
18、4,0)C(0,4)设抛物线的解析式为y=ax2+bx+c则有: 解得所以函数解析式为:(2)存在,(3,-4) 或(5,4)或(-5,4)理由如下:如图:P1相当于C点向右平移了5个单位长度,则坐标为(5,4);P2相当于C点向左平移了5个单位长度,则坐标为(-5,4);设P3坐标为(m,n)在第四象限,要使A P3BC是平行四边形,则有A P3=BC, B P3=AC 即 (舍去)P3坐标为(3,-4)【点睛】本题主要考查了二次函数综合题,此题涉及到待定系数法求二次函数解析式,通过作图确认平行四边形存在,然后通过观察和计算确定P点坐标;解题的关键在于规范作图,以便于树形结合.19、(1)a
19、=;(2)OP+AQ的最小值为2,此时点P的坐标为(1,);(3)P(4,8)或(4,8),【解析】(1)利用待定系数法求出直线AB解析式,根据旋转性质确定出C的坐标,代入二次函数解析式求出a的值即可;(2)连接BQ,可得PQ与OB平行,而PQ=OB,得到四边形PQBO为平行四边形,当Q在线段AB上时,求出OP+AQ的最小值,并求出此时P的坐标即可;(3)存在这样的点P,使得QPO=OBC,如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),根据正切函数定义确定出m的值,即可确定出P的坐标【详解】解:(1)设直线AB解析式为y=kx+b,把A(4,0),B(0,2)代入得:,解
20、得:,直线AB的解析式为y=x2,根据题意得:点C的坐标为(2,2),把C(2,2)代入二次函数解析式得:a=;(2)连接BQ,则易得PQOB,且PQ=OB,四边形PQBO是平行四边形,OP=BQ,OP+AQ=BQ+AQAB=2,(等号成立的条件是点Q在线段AB上),直线AB的解析式为y=x2,可设此时点Q的坐标为(t,t2),于是,此时点P的坐标为(t,t),点P在抛物线y=x2上,t=t2,解得:t=0或t=1,当t=0,点P与点O重合,不合题意,应舍去,OP+AQ的最小值为2,此时点P的坐标为(1,);(3)P(4,8)或(4,8),如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为
21、(m,m2),则tanHPO=,又,易得tanOBC=,当tanHPO=tanOBC时,可使得QPO=OBC,于是,得,解得:m=4,所以P(4,8)或(4,8)【点睛】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键20、(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144;(3)估计选择以“友善”为主题的七年级学生有360名.【解析】(1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;(2)用360乘以爱国所占的百
22、分比,即可求出圆心角的度数;(3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案【详解】解:(1)本次调查共抽取的学生有(名)选择“友善”的人数有(名)条形统计图如图所示:(2)选择“爱国”主题所对应的百分比为,选择“爱国”主题所对应的圆心角是;(3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有名.故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144;(3)估计选择以“友善”为主题的七年级学生有360名.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,
23、才能作出正确的判断和解决问题21、(1)(2)见解析;(3)P(0,2)【解析】分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x轴的对称点,依次连接即可.(3)作点C关于y轴的对称点C,连接B1C交y轴于点P,即为所求.详解:(1)(2)如图所示:(3)作点C关于y轴的对称点C,连接B1C交y轴于点P,则点P即为所求设直线B1C的解析式为y=kx+b(k0),B1(2,-2),C(1,4),解得:,直线AB2的解析式为:y=2x+2,当x=0时,y=2,P(0,2) 点睛:本题主要考查轴对称图形的绘制和轴对称的应用.22、 (1)1000;(2)54;(3)见解析
24、;(4)32万人【解析】根据“每项人数总人数该项所占百分比”,“所占角度360度该项所占百分比”来列出式子,即可解出答案.【详解】解:(1)40040%1000(人)(2)36054,故答案为:1000人;54;(3)110%9%26%40%15%15%1000150(人)(4)8052.8(万人)答:总人数为52.8万人.【点睛】本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.23、(1)B,C;(2)2;(3)该校身高在165x175之间的学生约有462人【解析】根据直方图即可求得男生的众数和中位数,求得男生的总人数,就是女生的总人数,然后乘以对应的百分比即可求解【详解】解
25、:(1)直方图中,B组的人数为12,最多,男生的身高的众数在B组,男生总人数为:4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,男生的身高的中位数在C组,故答案为B,C;(2)女生身高在E组的百分比为:117.5%37.5%25%15%=5%,抽取的样本中,男生、女生的人数相同,样本中,女生身高在E组的人数有:405%=2(人),故答案为2;(3)600+480(25%+15%)=270+192=462(人)答:该校身高在165x175之间的学生约有462人【点睛】考查频数(率)分布直方图, 频数(率)分布表, 扇形统计图, 中位数, 众数,比较基础,掌握计算方法是
26、解题的关键.24、两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线【解析】根据对角线互相平分的四边形是平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,由此可得到小楠的作图依据【详解】解:由作图的步骤可知平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,所以小楠的作图依据是:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了平行四边形的判定和性质