《福建省光泽县重点达标名校2022-2023学年毕业升学考试模拟卷数学卷含解析.doc》由会员分享,可在线阅读,更多相关《福建省光泽县重点达标名校2022-2023学年毕业升学考试模拟卷数学卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()Ax(x+1)210Bx(x1)210C2x(x1)210Dx(x
2、1)2102据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( )ABCD3我国古代数学著作九章算术中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为()A16+16B16+8C24+16D4+44A、B两地相距180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h若设原来的平均车速为xkm/h,则根据题意可列方程为ABCD5如图,在四边形ABCD中,对角线 ACBD,垂足为O,点
3、E、F、G、H分别为边AD、AB、BC、CD的中点若AC=10,BD=6,则四边形EFGH的面积为()A20B15C30D606计算x2y(2x+y)的结果为()A3xyB3x3yCx3yDxy7如图,AB是O的直径,弦CDAB,垂足为E,连接AC,若CAB=22.5,CD=8cm,则O的半径为()A8cmB4cmC4cmD5cm85的倒数是AB5CD59在同一直角坐标系中,二次函数y=x2与反比例函数y=(x0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令=x1+x2+x3,则的值为()A1 Bm Cm2 D10某班为奖励在学
4、校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件其中甲种奖品每件40元,乙种奖品每件30元如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件设购买甲种奖品x件,乙种奖品y件依题意,可列方程组为( )ABCD11已知二次函数yx24x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为()A1B2C3D412如图,四边形ABCD是菱形,AC=8,DB=6,DHAB于H,则DH=( )ABC12D24二、填空题:(本大题共6个小题,每小题4分,共24分)13抛物线 的顶点坐标是_14如图,在ABC中,C=40,CA=CB,则ABC的外角ABD=
5、15有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是 16如图,已知点A是反比例函数的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90得到线段OB,则点B所在图象的函数表达式为_17抛物线y=x22x+3的对称轴是直线_18如图,在RtABC中,ACB90,ABC30,将ABC绕点C顺时针旋转至ABC,使得点A恰好落在AB上,则旋转角度为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某居民小区一处圆柱形的输水管道破裂,维修人
6、员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面若这个输水管道有水部分的水面宽,水面最深地方的高度为4cm,求这个圆形截面的半径20(6分)如图1,四边形ABCD,边AD、BC的垂直平分线相交于点O连接OA、OB、OC、ODOE是边CD的中线,且AOB+COD180(1)如图2,当ABO是等边三角形时,求证:OEAB;(2)如图3,当ABO是直角三角形时,且AOB90,求证:OEAB;(3)如图4,当ABO是任意三角形时,设OAD,OBC,试探究、之间存在的数量关系?结论“OEAB”还成立吗?若成立,请你证明;若不成立,请说明理由21(6分)计算:_22(8分)如
7、图,在ABCD中,过点A作AEBC于点E,AFDC于点F,AE=AF(1)求证:四边形ABCD是菱形;(2)若EAF=60,CF=2,求AF的长23(8分)在ABC中,BAC=90,AB=AC,点D为直线BC上一动点(点D不与点B、C重合),以AD为直角边在AD右侧作等腰三角形ADE,使DAE=90,连接CE探究:如图,当点D在线段BC上时,证明BC=CE+CD应用:在探究的条件下,若AB=,CD=1,则DCE的周长为 拓展:(1)如图,当点D在线段CB的延长线上时,BC、CD、CE之间的数量关系为 (2)如图,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为 24(10分)解方
8、程组:25(10分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PFy轴交抛物线于点F,连结DF设点P的横坐标为m(1)求此抛物线所对应的函数表达式(2)求PF的长度,用含m的代数式表示(3)当四边形PEDF为平行四边形时,求m的值26(12分)解方程组: 27(12分)如图,已知:,求证:参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】设全组共有x名同学,那么每名同
9、学送出的图书是(x1)本;则总共送出的图书为x(x1);又知实际互赠了210本图书,则x(x1)=210.故选:B.2、B【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数详解:将360000000用科学记数法表示为:3.61故选:B点睛:此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、A【解析】分析出此三棱柱的立体图像即可得出答案.【详解】
10、由三视图可知主视图为一个侧面,另外两个侧面全等,是长高=4=,所以侧面积之和为2+44= 16+16,所以答案选择A项.【点睛】本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.4、A【解析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可【详解】解:设原来的平均车速为xkm/h,则根据题意可列方程为:=1故选A【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键5、B【解析】有一个角是直角的平行四边形是矩形利用中位线定理可得出四边形EFGH是矩形,根据矩形的面积公式解答即可【详解】
11、点E、F分别为四边形ABCD的边AD、AB的中点,EFBD,且EF=BD=1同理求得EHACGF,且EH=GF=AC=5,又ACBD,EFGH,FGHE且EFFG四边形EFGH是矩形四边形EFGH的面积=EFEH=15=2,即四边形EFGH的面积是2故选B【点睛】本题考查的是中点四边形解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(1)对角线互相平分且相等的四边形是矩形6、C【解析】原式去括号合并同类项即可得到结果【详解】原式,故选:C【点睛】本题主要考查了整式的加减运算,熟练掌握去括号及合并同类项是解决本
12、题的关键.7、C【解析】连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径【详解】解:连接OC,如图所示:AB是O的直径,弦CDAB, OA=OC,A=OCA=22.5,COE为AOC的外角,COE=45,COE为等腰直角三角形, 故选:C【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键8、C【解析】若两个数的乘积是1,我们就称这两个数互为倒数【详解】解:5的倒数是故选C9、D【解析】本题主要考察二次函数
13、与反比例函数的图像和性质.【详解】令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到=+()+=.所以本题选择D.【点睛】巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.10、A【解析】根据题意设未知数,找到等量关系即可解题,见详解.【详解】解:设购买甲种奖品x件,乙种奖品y件依题意,甲、乙两种奖品共20件,即x+y=20, 购买甲、乙两种奖品共花费了650元,即40x+30y=650,综上方程组为,故选A.【点睛】本题考查了二元一次方程组的列式,属于简单题,找到等量关系是解题关键.11、B【解析】先将点A(1,0)代入y
14、x24x+m,求出m的值,将点A(1,0)代入yx24x+m,得到x1+x24,x1x23,即可解答【详解】将点A(1,0)代入yx24x+m,得到m3,所以yx24x+3,与x轴交于两点,设A(x1,y1),b(x2,y2)x24x+30有两个不等的实数根,x1+x24,x1x23,AB|x1x2| 2;故选B【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.12、A【解析】解:如图,设对角线相交于点O,AC=8,DB=6,AO=AC=8=4,BO=BD=6=3,由勾股定理的,AB=5,DHAB,S菱形ABCD=ABDH=ACBD,即5DH=86,解得DH=故选A【点睛】本题考
15、查菱形的性质二、填空题:(本大题共6个小题,每小题4分,共24分)13、(0,-1)【解析】a=2,b=0,c=-1,-=0, ,抛物线的顶点坐标是(0,-1),故答案为(0,-1).14、110【解析】试题解析:解:C40,CACB,AABC70,ABDAC110.考点:等腰三角形的性质、三角形外角的性质点评:本题主要考查了等腰三角形的性质、三角形外角的性质.等腰三角形的两个底角相等;三角形的外角等于与它不相邻的两个内角之和.15、【解析】试题分析:这四个数中,奇数为1和3,则P(抽出的数字是奇数)=24=考点:概率的计算16、【解析】点A是反比例函数的图象上的一个动点,设A(m,n),过A
16、作ACx轴于C,过B作BDx轴于D,AC=n,OC=m,ACO=ADO=90,AOB=90,CAO+AOC=AOC+BOD=90,CAO=BOD,在ACO与ODB中,ACO=ODB,CAO=BOD,AO=BO,ACOODB,AC=OD=n,CO=BD=m,B(n,m),mn=2,n(m)=2,点B所在图象的函数表达式为,故答案为:17、x=1【解析】把解析式化为顶点式可求得答案【详解】解:y=x2-2x+3=(x-1)2+2,对称轴是直线x=1,故答案为x=1【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k)
17、18、60【解析】试题解析:ACB=90,ABC=30,A=90-30=60,ABC绕点C顺时针旋转至ABC时点A恰好落在AB上,AC=AC,AAC是等边三角形,ACA=60,旋转角为60故答案为60.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、这个圆形截面的半径为10cm.【解析】分析:先作辅助线,利用垂径定理求出半径,再根据勾股定理计算解答:解:如图,OEAB交AB于点D,则DE=4,AB=16,AD=8,设半径为R,OD=OE-DE=R-4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R-4)2,解得,R=10cm20、(1)详见解析;
18、(2)详见解析;(3)+90;成立,理由详见解析【解析】(1)作OHAB于H,根据线段垂直平分线的性质得到OD=OA,OB=OC,证明OCEOBH,根据全等三角形的性质证明;(2)证明OCDOBA,得到AB=CD,根据直角三角形的性质得到OE=CD,证明即可;(3)根据等腰三角形的性质、三角形内角和定理计算;延长OE至F,是EF=OE,连接FD、FC,根据平行四边形的判定和性质、全等三角形的判定和性质证明【详解】(1)作OHAB于H,AD、BC的垂直平分线相交于点O,OD=OA,OB=OC,ABO是等边三角形,OD=OC,AOB=60,AOB+COD180COD=120,OE是边CD的中线,O
19、ECD,OCE=30,OA=OB,OHAB,BOH=30,BH=AB,在OCE和BOH中,OCEOBH,OE=BH,OE=AB;(2)AOB=90,AOB+COD=180,COD=90,在OCD和OBA中, ,OCDOBA,AB=CD,COD=90,OE是边CD的中线,OE=CD,OE=AB;(3)OAD=,OA=OD,AOD=1802,同理,BOC=1802,AOB+COD=180,AOD+COB=180,1802+1802=180,整理得,+=90;延长OE至F,使EF=OE,连接FD、FC,则四边形FDOC是平行四边形, OCF+COD=180,AOB=FCO,在FCO和AOB中,FCO
20、AOB,FO=AB,OE=FO=AB【点睛】本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键21、1【解析】首先计算负整数指数幂和开平方,再计算减法即可【详解】解:原式931【点睛】此题主要考查了实数运算,关键是掌握负整数指数幂:为正整数)22、 (1)见解析;(2)2【解析】(1) 方法一: 连接AC, 利用角平分线判定定理, 证明DA=DC即可; 方法二: 只要证明AEBAFD. 可得AB=AD即可解决问题;(2) 在RtACF, 根据AF=CFt
21、anACF计算即可.【详解】(1)证法一:连接AC,如图AEBC,AFDC,AE=AF,ACF=ACE,四边形ABCD是平行四边形,ADBCDAC=ACBDAC=DCA,DA=DC,四边形ABCD是菱形证法二:如图,四边形ABCD是平行四边形,B=DAEBC,AFDC,AEB=AFD=90,又AE=AF,AEBAFDAB=AD,四边形ABCD是菱形(2)连接AC,如图AEBC,AFDC,EAF=60,ECF=120,四边形ABCD是菱形,ACF=60,在RtCFA中,AF=CFtanACF=2【点睛】本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。
22、23、探究:证明见解析;应用:;拓展:(1)BC= CD-CE,(2)BC= CE-CD【解析】试题分析:探究:判断出BAD=CAE,再用SAS即可得出结论;应用:先算出BC,进而算出BD,再用勾股定理求出DE,即可得出结论;拓展:(1)同探究的方法得出ABDACE,得出BD=CE,即可得出结论;(2)同探究的方法得出ABDACE,得出BD=CE,即可得出结论试题解析:探究:BAC=90,DAE=90,BAC=DAEBAC=BAD+DAC,DAE=CAE+DAC,BAD=CAEAB=AC,AD=AE,ABDACEBD=CEBC=BD+CD,BC=CE+CD应用:在RtABC中,AB=AC=,A
23、BC=ACB=45,BC=2,CD=1,BD=BC-CD=1,由探究知,ABDACE,ACE=ABD=45,DCE=90,在RtBCE中,CD=1,CE=BD=1,根据勾股定理得,DE=,DCE的周长为CD+CE+DE=2+故答案为2+拓展:(1)同探究的方法得,ABDACEBD=CEBC=CD-BD=CD-CE,故答案为BC=CD-CE;(2)同探究的方法得,ABDACEBD=CEBC=BD-CD=CE-CD,故答案为BC=CE-CD24、 【解析】设=a, =b,则原方程组化为,求出方程组的解,再求出原方程组的解即可【详解】设=a, =b,则原方程组化为:,+得:4a=4,解得:a=1,把
24、a=1代入得:1+b=3,解得:b=2,即,解得:,经检验是原方程组的解,所以原方程组的解是【点睛】此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.25、(1)y=-x2+2x+1;(2)-m2+1m(1)2.【解析】(1)根据待定系数法,可得函数解析式;(2)根据自变量与函数值的对应关系,可得C点坐标,根据平行于y
25、轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得答案;(1)根据自变量与函数值的对应关系,可得F点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得DE的长,根据平行四边形的对边相等,可得关于m的方程,根据解方程,可得m的值【详解】解:(1)点A(-1,0),点B(1,0)在抛物线y=-x2+bx+c上,解得,此抛物线所对应的函数表达式y=-x2+2x+1;(2)此抛物线所对应的函数表达式y=-x2+2x+1,C(0,1)设BC所在的直线的函数解析式为y=kx+b,将B、C点的坐标代入函数解析式,得,解得,即BC的函数解析式为y=-x+1由P在BC上,F在抛物线
26、上,得P(m,-m+1),F(m,-m2+2m+1)PF=-m2+2m+1-(-m+1)=-m2+1m(1)如图,此抛物线所对应的函数表达式y=-x2+2x+1,D(1,4)线段BC与抛物线的对称轴交于点E,当x=1时,y=-x+1=2,E(1,2),DE=4-2=2由四边形PEDF为平行四边形,得PF=DE,即-m2+1m=2,解得m1=1,m2=2当m=1时,线段PF与DE重合,m=1(不符合题意,舍)当m=2时,四边形PEDF为平行四边形考点:二次函数综合题26、【解析】方程组整理后,利用加减消元法求出解即可【详解】解:方程组整理得: +得:9x=-45,即x=-5,把x=-代入得: 解得:则原方程组的解为【点睛】本题主要考查二元一次方程组的解法,二元一次方程组的解法有两种:代入消元法和加减消元法,根据题目选择合适的方法27、证明见解析;【解析】根据HL定理证明RtABCRtDEF,根据全等三角形的性质证明即可【详解】,BE为公共线段,CE+BE=BF+BE,即 又,在与中, AC=DF.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键