《2022-2023学年湖北省广水市重点达标名校毕业升学考试模拟卷数学卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年湖北省广水市重点达标名校毕业升学考试模拟卷数学卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图所示图形中,不是正方体的展开图的是()ABCD2如图,在中,分别在边边上,已知,则的值为( )ABCD3如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分
2、),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )A28cm2B27cm2C21cm2D20cm24已知方程的两个解分别为、,则的值为()ABC7D35下列命题是真命题的是()A如果a+b0,那么ab0B的平方根是4C有公共顶点的两个角是对顶角D等腰三角形两底角相等6如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )ABCD7如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )AAB=ADBAC平分BCDCAB=BDDBECDEC8分别写有数字0,1,2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )ABC
3、D9一元二次方程的根是( )ABCD10在平面直角坐标系中,位于第二象限的点是()A(1,0)B(2,3)C(2,1)D(3,1)二、填空题(本大题共6个小题,每小题3分,共18分)11如图,点A为函数y=(x0)图象上一点,连结OA,交函数y=(x0)的图象于点B,点C是x轴上一点,且AO=AC,则OBC的面积为_12如果抛物线y=x2+(m1)x+3经过点(2,1),那么m的值为_13已知抛物线与直线在之间有且只有一个公共点,则的取值范围是_14计算:+(|3|)0=_15在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD相交于M,则AM:BM=
4、_16如图,在ABC中,ACB=90,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tanCBD=,则BD=_三、解答题(共8题,共72分)17(8分)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获
5、利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?18(8分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元今年年初,“共享单车”试点投放在某市中心城区正式启动投放A,B两种款型的单车共100辆,总价值36800元试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元请问城区10万人口平均每100人至少享有A型车与B型车各
6、多少辆?19(8分)如图,BAC的平分线交ABC的外接圆于点D,交BC于点F,ABC的平分线交AD于点E(1)求证:DEDB:(2)若BAC90,BD4,求ABC外接圆的半径;(3)若BD6,DF4,求AD的长20(8分)先化简,再求值:,其中m2.21(8分)作图题:在ABC内找一点P,使它到ABC的两边的距离相等,并且到点A、C的距离也相等(写出作法,保留作图痕迹)22(10分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸
7、出的球上的数字之和小于5,那么小王去,否则就是小李去(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由23(12分) “食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 ;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞
8、赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率24已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在ABC内,CAE+CBE=1(1)如图,当四边形ABCD和EFCG均为正方形时,连接BFi)求证:CAECBF;ii)若BE=1,AE=2,求CE的长;(2)如图,当四边形ABCD和EFCG均为矩形,且时,若BE1,AE=2,CE=3,求k的值;(3)如图,当四边形ABCD和EFCG均为菱形,且DAB=GEF=45时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系(直接写出结果,不必写出解答过程)参考答案一、选择题(共10小题,每小题3分,共30分)
9、1、C【解析】由平面图形的折叠及正方形的展开图结合本题选项,一一求证解题.【详解】解:A、B、D都是正方体的展开图,故选项错误;C、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图故选C【点睛】此题考查正方形的展开图,难度不大,但是需要空间想象力才能更好的解题2、B【解析】根据DEBC得到ADEABC,根据相似三角形的性质解答【详解】解:,DEBC,ADEABC,故选:B【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键3、B【解析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得【详解】解:依题意,在矩形ABDC中截取矩形AB
10、FE,则矩形ABDC矩形FDCE,则 设DF=xcm,得到:解得:x=4.5,则剩下的矩形面积是:4.56=17cm1【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键4、D【解析】由根与系数的关系得出x1x25,x1x22,将其代入x1x2x1x2中即可得出结论【详解】解:方程x25x20的两个解分别为x1,x2,x1x25,x1x22,x1x2x1x2521故选D【点睛】本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x1x25,x1x22本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键5、D【解析】解:A、如
11、果a+b=0,那么a=b=0,或a=b,错误,为假命题;B、=4的平方根是2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D6、C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图7、C【解析】解:AC垂直平分BD,AB=AD,BC=CD,AC平分BCD,平分BCD,BE=DEBCE=DCE在RtBCE和RtDCE中,BE=DE,BC=DC,RtBCERtDCE(HL)选项ABD都一定成立故选C8、B【解析】试题分析:根据概率的求法,找准两点:全部等可能情
12、况的总数;符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,1,2,1,3中任抽一张,那么抽到负数的概率是.故选B.考点:概率.9、D【解析】试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题原方程可化为:,因此或,所以故选D考点:一元二次方程的解法因式分解法提公因式法10、D【解析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可【详解】根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C(3,1)符合,故选:D【点睛】本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质.二、填空题(本大题共6个小题,每小题3分
13、,共18分)11、6【解析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到OBC的面积【详解】设点A的坐标为(a,),点B的坐标为(b,),点C是x轴上一点,且AO=AC,点C的坐标是(2a,0),设过点O(0,0),A(a, )的直线的解析式为:y=kx,=ka,解得k=,又点B(b, )在y=x上,=b,解得, =或= (舍去),SOBC=6.故答案为:6.【点睛】本题考查了等腰三角形的性质与反比例函数的图象以及三角形的面积公式,解题的关键是熟练的掌握等腰三角形的性质与反比例
14、函数的图象以及三角形的面积公式.12、2【解析】把点(2,1)代入y=x2+(m1)x+3,即可求出m的值.【详解】抛物线y=x2+(m1)x+3经过点(2,1),1= -4+2(m-1)+3,解得m=2,故答案为2.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式.13、或【解析】联立方程可得,设,从而得出的图象在上与x轴只有一个交点,当时,求出此时m的值;当时,要使在之间有且只有一个公共点,则当x=-2时和x=2时y的值异号,从而求出m的取值范围;【详解】联立可得:,令,抛物线与直线在之间有且只有一个公共点,即的图象在上与x轴只有一个交点,
15、当时,即解得:,当时,当时,满足题意,当时,令,令,令代入解得:,此方程的另外一个根为:,故也满足题意,故的取值范围为:或故答案为: 或.【点睛】此题考查的是根据二次函数与一次函数的交点问题,求函数中参数的取值范围,掌握把函数的交点问题转化为一元二次方程解的问题是解决此题的关键14、【解析】原式= .15、5:1【解析】根据题意作出合适的辅助线,然后根据三角形相似即可解答本题【详解】解:作AEBC交DC于点E,交DF于点F,设每个小正方形的边长为a,则DEFDCN,EF=a,AF=2a,AE=a,AMEBMC,故答案为:5:1【点睛】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找
16、出所求问题需要的条件,利用数形结合的思想解答16、2【解析】由tanCBD= 设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案【详解】解:在RtBCD中,tanCBD=,设CD=3a、BC=4a,则BD=AD=5a,AC=AD+CD=5a+3a=8a,在RtABC中,由勾股定理可得(8a)2+(4a)2=82,解得:a= 或a=-(舍),则BD=5a=2,故答案为2【点睛】本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图三、解答题(共8题,共
17、72分)17、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元【解析】解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组得:,2分解方程组得:,购进一件A种纪念品需要100元,购进一件B种纪念品需要50元4分;(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100x)个,6分解得:50x53,7分x 为正整数,共有4种进货方案8分;(3)因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件10分总利润=5
18、020+5030=2500(元)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元12分18、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得详解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:,解得:,答:本次试点投放的
19、A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a400+2a3201840000,解得:a1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000=3辆、至少享有B型车2000=2辆点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组19、(1)见解析;(2)2 (3)1【解析】(1)通过证明BED=DBE得到DB=DE;(2)连接CD,如图,证明D
20、BC为等腰直角三角形得到BC=BD=4,从而得到ABC外接圆的半径;(3)证明DBFADB,然后利用相似比求AD的长【详解】(1)证明:AD平分BAC,BE平分ABD,1=2,3=4,BED=1+3=2+4=5+4=DBE,DB=DE;(2)解:连接CD,如图,BAC=10,BC为直径,BDC=10,1=2,DB=BC,DBC为等腰直角三角形,BC=BD=4,ABC外接圆的半径为2;(3)解:5=2=1,FDB=BDA,DBFADB,=,即=,AD=1【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心也考查了圆周角定理和相似三角形的判定与
21、性质20、,原式.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把m的值代入计算即可求出值.【详解】原式,当m2时,原式.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21、见解析【解析】先作出ABC的角平分线,再连接AC,作出AC的垂直平分线,两条平分线的交点即为所求点【详解】以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;分别以D、E为圆心,以大于DE为半径画圆,两圆相交于F点;连接AF,则直线AF即为ABC的角平分线;连接AC,分别以A、C为圆心,以大于AC为半径画圆,两圆相交于F、H两点;连接FH交BF于点M,则M点即为所
22、求【点睛】本题考查的是角平分线及线段垂直平分线的作法,熟练掌握是解题的关键22、(1);(2)规则是公平的;【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=;(2)不公平,理由如下:P(小王)=,P(小李)=,规则不公平点睛:本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比23、(1)60
23、,1(2)补图见解析;(3) 【解析】(1)根据了解很少的人数和所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案【详解】(1)接受问卷调查的学生共有3050%60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为3601,故答案为60,1(2)了解的人数有:601530105(人),补图如下:(3)画树状图得:共有20种等可能的结果,恰好抽到1个男生和1个女生的有
24、12种情况,恰好抽到1个男生和1个女生的概率为【点睛】此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率所求情况数与总情况数之比24、(1)i)证明见试题解析;ii);(2);(3)【解析】(1)i)由ACE+ECB=45, BCF+ECB=45,得到ACE=BCF,又由于,故CAECBF;ii)由,得到BF=,再由CAECBF,得到CAE=CBF,进一步可得到EBF=1,从而有,解得;(2)连接BF,同理可得:EBF=1,由,得到,故,从而,得到,代入解方程即可;(3)连接BF,同理可得:EBF=1,过C作CHAB延长线于H,可得:,故,从而有【详解】解:(1)i)ACE+ECB=45, BCF+ECB=45,ACE=BCF,又,CAECBF;ii),BF=,CAECBF,CAE=CBF,又CAE+CBE=1,CBF+CBE=1,即EBF=1,解得;(2)连接BF,同理可得:EBF=1,解得;(3)连接BF,同理可得:EBF=1,过C作CHAB延长线于H,可得:,【点睛】本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质